Next generation sequencing results in 142 patients with congenital hyperinsulinism

Diliara Gubaeva, Maria Melikyan, Eugeny Vasilev, Vasily Petrov, Anatoly Tiulpakov
Endocrinology Research Centre, Moscow, Russia

OBJECTIVES

Congenital hyperinsulinism (HI) is a life-threatening disorder characterized by hypoglycemia due to dysregulated secretion of insulin from pancreatic β-cells. Genetic diagnosis is essential for patient management. NGS technologies are relatively new method which gives the ability to generate large amounts of sequence data in a relatively short period of time enabling timely diagnosis.

METHODS

We performed NGS in 142 patients (66 males, 76 females) with HI and evaluated the results. The diagnosis of HI was based on clinical presentation and confirmed biochemically by the presence of detectable serum insulin during hypoglycemia.

NGS (Ion Torrent platform): GCG, GLUD1, WFS1, HNF1A, GCK, INS, HNF1B, ABCC8, HNF4A, RFX6, PTF1A, NEUROD1, AKT2, ZFP57, INSR, EIF2AK3, PPARG, PAX4, PDX1, GLIS3, KCNJ11, SLC16A1, FOXP3, BLK, CEL, KLF11, SCHAD, GCGR.

RESULTS

A total of 73 different pathogenic/likely pathogenic variants in 77 patients were found:
- 52 ABCC8 variants (reported 23/52)
- 11 KCNJ11 variants (previously reported 7/11)
- 8 variants related to GLUD1 (previously reported 8/8)
- 2 heterozygous variants in SCHAD (not reported formerly)

HI PATIENTS: NGS RESULTS

Some frequent pathogenic/likely pathogenic variants were found in several patients:
- ABCC8 heterozygous c.G1332T:p.Q444H (3 patients)
- ABCC8 heterozygous c.G4516A:p.E1506K (3 patients)

CONCLUSIONS

The genetic cause of HI was found in 54% of the patients with the use of NGS technologies. These data are comparable to results of Sanger sequencing. According to our experience, NGS technologies proved to be comparatively fast and trustworthy method.

Conflict of interests

Authors declare no conflicts of interests.