Novel variant in GNRHR gene regulatory region in a pedigree with maternally inherited precocious puberty

Magdalena Avbelj Stefanič1, Jernej Kovač2, Bruno Quérat1, Galia Yablonski4,5,6, Moshe Phillip5,6, Tadej Battelino1,7, Joëlle Cohen-Tannoudji1,8, Liat de Vries5,6
1 University Medical Centre Ljubljana, University Children’s Hospital, Department for Pediatric Endocrinology, diabetes and metabolism, Bohorovba 20, SI-1000 Ljubljana, Slovenia, 2 University Medical Centre Ljubljana, University Children’s Hospital, Unit for special laboratory diagnostics, Vrazov trg 1, Ljubljana, Slovenia, 3 University Paris-Diderot (IUP), Institut de Biologie Fonctionnelle et Adaptative UMR 8251 CNRS, Équipe Physiologie de l’Âge Gotondotome U1133 INSERM, Paris, France, 4 Faisantem Medical Research Center, Petah Tikva, 5 The Jesse Z and Sara Lea Shafter Institute for Endocrinology and Diabetes, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel, 6 Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel, 7 Faculty of Medicine, University of Zürich, Vrazov trg 2, 1000 Ljubljana, Slovenia.
The authors declare no conflicts of interests.

Background
1. Gonadotropin releasing hormone (GnRH) and its receptor (GnRHR) - central regulators of puberty.
2. Loss-of-function mutations of the GnRH-GnRHR signaling pathway are associated with congenital hypogonadal hypopogonadism, but no mutations were reported so far in patients with central precocious puberty (CPP).
3. Animal data demonstrate the importance of microRNAs (control mRNA stability and translation) in pubertal timing regulation.1,2

Aim: To identify genetic causes of maternally inherited CPP.

Patients and methods
• 8 family trios affected with maternally inherited CPP (Figure 1, Table 1) from 2 unrelated populations (Israeli and Slovene)

Whole genome sequencing
• Genetic variants with coverage >10x were retained and analyzed with Variant Studio 3.0 software
• Family trio approach
• Autosomal dominant model
• MAF<0.2%
• Synonymous changes filtered

Unbiased analysis – Search for overlapping genes with rare variants in coding regions + 5’ and 3’ UTR
• Targeted analysis - 398 genes associated with the age at menarche3
• coding and regulatory regions and copy number variations, sorted by a C score (Combined Annotation Dependent Depletion (CADD))4

In vitro functional analysis of GNRHR NM_000406.2.c:1509G->A variant (Figure 2)
• A 465 nt long fragment of the hGnRHR 3’ UTR (centered on the mutation) was inserted into the 3’ UTR of the firefly luciferase cloned into pGL3 control.
• Mouse gonadotrope-derived cell line (LbêtaT2) were transfected
• After 24 h actinomycin D was added to block the transcription
• The luciferase activity was measured after 17 to 48 hours.
• The efficiency of the transcription was controlled by using a co-transfected vector encoding the renilla luciferase.
• The assay was performed in quadruplicates and using two different cell batches.

Results
• The average coverage of each genome was 38x and around 3.8M SNVs and InDelS, 5k SVs and 600 copy number variants were detected on average per single sample.
• By unbiased analysis rare coding variants were identified in both populations in 6 genes (Figure 3), but ZNF717 variants were not confirmed by Sanger.
• Targeted analysis - 200 rare coding and non-coding variants/pedigree
• Pedigrees #4 - a variant in 3 untranslated region (UTR) region of GNRHR gene segregating with CPP, NM. 000406.2.c:1509G>A, not present in gnomAD database, confirmed by Sanger.
• In vitro functional analysis demonstrated nonsignificant difference in decrease of firefly luciferase activity between wild type and mutant (Figure 4).

Conclusions
1. The common cause of maternally inherited CPP in the 8 affected pedigrees was not identified.
2. The hypothesis that deregulated regulation of GNRHR mRNA decay influences pubertal timing in the pedigree #4 was not confirmed.
3. The cause of familial CPP in the presented pedigree remains to be determined and may be in the other regulatory regions, epigenetic or in a gene not known to be associated with pubertal timing in the general population.

Table 1: Clinical characteristics

<table>
<thead>
<tr>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Patient 3</th>
<th>PPHTF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at onset</td>
<td><6</td>
<td><6</td>
<td><6</td>
</tr>
<tr>
<td>Age of puberty</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Pubertal stage</td>
<td>R3</td>
<td>R3</td>
<td>R3</td>
</tr>
<tr>
<td>Pubertal hormone</td>
<td>R3</td>
<td>R3</td>
<td>R3</td>
</tr>
<tr>
<td>Bone age SD</td>
<td><1.5</td>
<td><1.5</td>
<td><1.5</td>
</tr>
<tr>
<td>IGF body index</td>
<td><1.5</td>
<td><1.5</td>
<td><1.5</td>
</tr>
<tr>
<td>IGF-1 peak (11-15)</td>
<td>9.6</td>
<td>9.25</td>
<td>9.65</td>
</tr>
<tr>
<td>Growth rate</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Height SDS</td>
<td>1.22</td>
<td>1.22</td>
<td>1.22</td>
</tr>
<tr>
<td>BMI SDS</td>
<td>2.44</td>
<td>2.44</td>
<td>2.44</td>
</tr>
<tr>
<td>Male/female ratio</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
</tbody>
</table>

Figure 1: Pedigrees

Figure 2: Shematic representation of a functional assay - GNRHR mRNA decay by luciferase reporter assay

Figure 3: Overlapping genes in Israeli and Slovenian pedigrees

Figure 4: Nonsignificant difference in decrease of firefly luciferase activity between the wild type and the mutant using two different cell batches

Funding
This work was supported by the ESPE Research Unit Grant 2016 - 2018, and the University Medical Centre Ljubljana Terciary project (grant number 201700084).

References
1. Jesser Z and Sara Lea Shafter Institute for Endocrinology and Diabetes, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel, 2 Family of Medicine, University of Zürich, Vrazov trg 2, 1000 Ljubljana, Slovenia.

Poster presented at: ESPE 2018 – RFC9.2
Pituitary, neuroendocrinology and puberty
Magdalena Avbelj