Familial Turner syndrome: case report

López Dacal, Jimena1; Enacan, Rosa 2; Villanueva, Mercedes 2; Brunetto, Oscar 1; Figueroa, Verónica 1
1Endocrine Division, 2 Genetic Division, Pedro de Elizalde Children’s Hospital, 3 Pediatric Office, Buenos Aires, Argentina.

Backgrounds

Turner syndrome (TS) is a chromosomal disorder characterized by partial or complete lack of one X chromosome. It presents variable phenotypic spectrum. Isochromosome X, of the long arm (46X[i(Xq)]) is the third most frequent karyotype, 7-15% of TS, and could be in mosaicism. The phenotypic manifestations are similar to girls 45X. A higher incidence of thyroid autoimmunity, diabetes mellitus and intellectual disability was reported, even though is currently under discussion. Congenital heart malformations and premature ovarian failure are less frequent.

One third of girls with TS have spontaneous puberal development, occurring more often in those with mosaicism and some structural anomalies. Spontaneous pregnancies are rare (3-5%).

Objective

We describe a family with vertical transmission of TS carrying non-mosaic isochromosome Xq, which involves 4 women of two generations.

Case Report

Index Case (1)

A 2.9 years old girl was referred because of horseshoe kidney and phenotypic features compatible with TS. Her height was at -1.23 SDS and has high-arched palate, lower implanted ears, cubitus valgus and broad chest. The karyotype was non-mosaic isochromosome 46X[i(Xq)] [30] with negative SRY. She has been on growth hormone treatment since she was 4.3 years old and now she is 8.7 years old and her height is at -0.41 SD (Fig 1 Growth chart). It is of note that she had an advance bone age since diagnosis. Additionally, she has mild intellectual disability (IQ 76).

The karyotype was requested to her mother because of severe short stature with height at -4.6 SDS and body disproportion. She presented cubitus valgus, Madelung deformity, and altered sitting height. She had 5 pregnancies, 3 full terms and two miscarriages. She still has regular menstrual cycles at 32 years old.

The genetic study was amplified to the other daughters, who presented the same chromosomal abnormality. The older one, who was 10.8 years at her first visit, had spontaneously puberal development, with Tanner stage BS PH 3. She is now on growth hormone treatment. Both of them have intellectual disability.

Data of the main clinical features of the patients are listed in table 1

Pedigree chart

Table 1 Clinical features

<table>
<thead>
<tr>
<th>Case</th>
<th>Age (years)</th>
<th>Height (SDS)</th>
<th>Madelung</th>
<th>US/LS*</th>
<th>SH/H** (SDS)</th>
<th>Cubitus valgus</th>
<th>Horseshoe kidney</th>
<th>Thyroid autoimmunity</th>
<th>Intelectual disability (IQ)</th>
<th>Onset of puberty</th>
<th>GH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.7</td>
<td>125(-0.1)</td>
<td>-</td>
<td>1.15</td>
<td>0.53 (0.5)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>76</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>32.5</td>
<td>135(-4.6)</td>
<td>+</td>
<td>1.26</td>
<td>0.56 (>-2.5)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>85</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>10.8</td>
<td>130(-1.23)</td>
<td>+</td>
<td>1.24</td>
<td>0.55 (>-2.5)</td>
<td>+</td>
<td>-</td>
<td>78</td>
<td>9</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.8</td>
<td>109.8(0.45)</td>
<td>-</td>
<td>1.38</td>
<td>0.58 (>2.5)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Severe</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Objective

We describe a family with vertical transmission of TS carrying non-mosaic isochromosome Xq, which involves 4 women of two generations.

Case Report

Index Case (1)

A 2.9 years old girl was referred because of horseshoe kidney and phenotypic features compatible with TS. Her height was at -1.23 SDS and has high-arched palate, lower implanted ears, cubitus valgus and broad chest. The karyotype was non-mosaic isochromosome 46X[i(Xq)] [30] with negative SRY. She has been on growth hormone treatment since she was 4.3 years old and now she is 8.7 years old and her height is at -0.41 SD (Fig 1 Growth chart). It is of note that she had an advance bone age since diagnosis. Additionally, she has mild intellectual disability (IQ 76).

The karyotype was requested to her mother because of severe short stature with height at -4.6 SDS and body disproportion. She presented cubitus valgus, Madelung deformity, and altered sitting height. She had 5 pregnancies, 3 full terms and two miscarriages. She still has regular menstrual cycles at 32 years old.

The genetic study was amplified to the other daughters, who presented the same chromosomal abnormality. The older one, who was 10.8 years at her first visit, had spontaneously puberal development, with Tanner stage BS PH 3. She is now on growth hormone treatment. Both of them have intellectual disability.

Data of the main clinical features of the patients are listed in table 1

Pedigree chart

Table 1 Clinical features

<table>
<thead>
<tr>
<th>Case</th>
<th>Age (years)</th>
<th>Height (SDS)</th>
<th>Madelung</th>
<th>US/LS*</th>
<th>SH/H** (SDS)</th>
<th>Cubitus valgus</th>
<th>Horseshoe kidney</th>
<th>Thyroid autoimmunity</th>
<th>Intelectual disability (IQ)</th>
<th>Onset of puberty</th>
<th>GH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.7</td>
<td>125(-0.1)</td>
<td>-</td>
<td>1.15</td>
<td>0.53 (0.5)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>76</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>32.5</td>
<td>135(-4.6)</td>
<td>+</td>
<td>1.26</td>
<td>0.56 (>-2.5)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>85</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>10.8</td>
<td>130(-1.23)</td>
<td>+</td>
<td>1.24</td>
<td>0.55 (>-2.5)</td>
<td>+</td>
<td>-</td>
<td>78</td>
<td>9</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.8</td>
<td>109.8(0.45)</td>
<td>-</td>
<td>1.38</td>
<td>0.58 (>2.5)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Severe</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Conclusion

Despite the low frequency of spontaneous pregnancies in patients with TS and even more infrequent TS transmission, when ovarian function is preserved, it is possible to transmit TS to next generations. Two of the 4 exposed cases developed spontaneous puberty, and the mother had 5 pregnancies, 3 full term. The phenotypic expression was variable despite having the same karyotype. The index case is the only that does not have marked corporal disproportion and we think this could be related with growth hormone treatment. In this family, we think that it is important to have genetic counseling, as it is possible to continue with TS transmission.

Bibliography