

Refractory Hyperinsulinaemic Hypoglycaemia in Beckwith-Wiedemann Syndrome due to Imprinting Control Region 1 Gain of Methylation: severity discordant to genotype.

Louise S Conwell^{1,2}, Craig A McBride^{2,3}, Kelvin Choo^{2,3}, Shawn C Tadgell¹, Michelle E Fuery⁴, Janene R Davies⁵.

¹ Department of Endocrinology and Diabetes, Queensland Children's Hospital, Brisbane, Australia ² School of Clinical Medicine, Faculty of Medicine, University of Queensland, Brisbane, Australia ³ Department of Paediatric Surgery, Queensland Children's Hospital, Brisbane, Australia ⁴ Department of Dietetics and Food Services, Queensland Children's Hospital, Brisbane, Australia ⁵ Anatomical Pathology, Pathology Queensland, Brisbane, Australia

Case

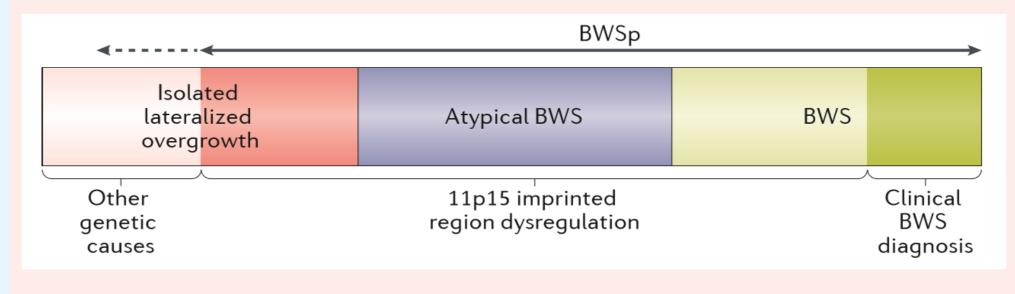
- Beckwith-Wiedemann syndrome (BWS), suspected antenatally was confirmed postnatally in a female
 - 35 weeks gestation
 - unaffected parents
 - natural non-consanguineous conception
 - no family history of hypoglycaemia or **BWS**
- Cardinal Beckwith-Wiedemann spectrum¹ features
 - macroglossia
 - no exomphalos, lateralised overgrowth or placental mesenchymal hyperplasia
- **Suggestive Beckwith-Wiedemann** spectrum¹ features
 - macrosomia
 - diastasis recti
 - umbilical hernia
 - no polyhydramnios, nephromegaly, ear creases / pits or facial naevus simplex

Molecular genetic testing

- Molecular defect
 - gain of methylation at *H19/IGF2* intergenic differentially methylated region (IGDMR), known as imprinting control region 1 (ICR1)
- This genotype
 - accounts for 5% of BWS
 - low frequency of exomphalos
 - high Wilms' tumour risk (24%)¹

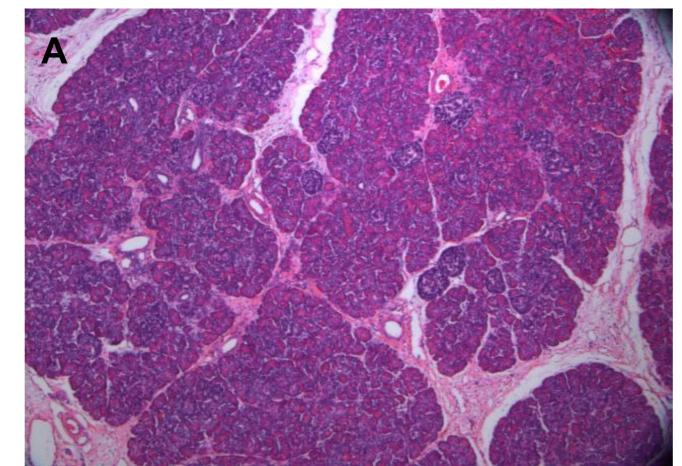
Hyperinsulinaemic Hypoglycaemia

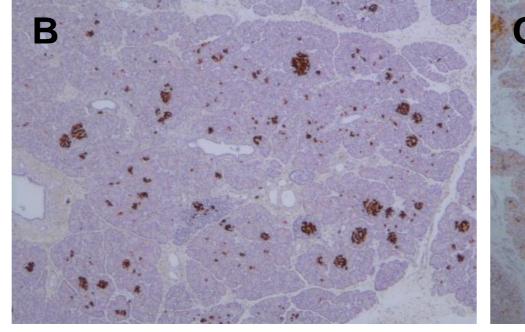
- Unexpected for genotype, she had severe hyperinsulinaemic hypoglycaemia
 - refractory to medical therapy (diazoxide, octreotide)
- No ABCC8 or KCNJ11 variants were detected
- Genotype would predict diffuse, not focal disease

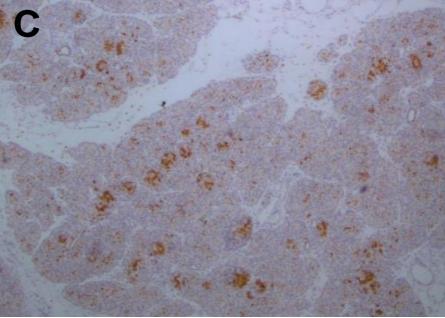

References

1. Brioude F et al. Nat Rev Endocrinol, 2018; 14(4):229-249 2. Kalish JM et al. J Med Genet, 2016; 53(1):53-61 3. Laje P et al. J Pediatr Surg 2013; 48(12):2511-2516 4. Senniappan S et al. J Pediatr Endocrinol Metab 2015; 28(1-2):83-6

Presented at the Annual European Society of Paediatric Endocrinology Meeting, Vienna, Austria, September 2019. A/Prof Louise S. Conwell, Louise.Conwell@health.qld.gov.au


Beckwith-Wiedemann syndrome (BWS)


- A multisystem human genomic imprinting disorder with variable clinical expression and complex molecular aetiology¹
- An international consensus statement has introduced the concept of **Beckwith-Wiedemann spectrum** (BWSp)¹



- Hyperinsulinaemic hypoglycaemia is common (30-60%)
 - persistent, severe cases refractory to medical management are usually associated with the paternal uniparental disomy (pUPD11) molecular defect
 - majority do not have a paternal inactivating K_{ATP} channel variant but those that do have even more refractory hypoglycaemia
 - > those cases may have large, focal pancreatic lesions^{1,2}
 - in BWS due to other molecular defects
 - hypoglycaemia usually resolves within days
 - > persistent cases are usually diazoxide-responsive¹

Figure

- A. Representative section of pancreas showing minimal increase in islets - without nuclear enlargement and without focal adenomatous hyperplasia, H&E, 40x
- **B.** Islets demonstrated with antibody to insulin, 40x
- C. p57 expression in islets retained, 40x
 - retained in normal islets and in diffuse CHI
 - loss of expression in focal CHI

Clinical Course

- Complications included catheter-related bloodstream infections and thromboses
- Macroglossia
 - exacerbated feeding difficulties
 - impeded expressive language development
 - contributed to mixed sleep-disordered breathing requiring oxygen in sleep
- Subtotal pancreatectomy (80-85%) was performed at 11 weeks of age
 - in this context, reducing endocrine tissue mass may suffice³
- Histology was atypical for diffuse / focal Congenital Hyperinsulinism (CHI)
- large, numerous islets as previously observed in BWS (Figure)
- CHI continued to be refractory to medical management
- Octreotide trialled again
- brief use of Rapamycin (Sirolimus)
 - exacerbated transaminitis and anaemia
 - ceased at the onset of a sepsis episode
- [18F]-DOPA PET/CT scan did not indicate the unlikely scenario of ectopic disease
- Further resection to the equivalent of a 95% pancreatectomy was performed two weeks after the initial resection (13 weeks of age)
- exocrine pancreatic insufficiency
- CHI persisted: medical support included intragastric feeds / dextrose, Octreotide
- Lanreotide commenced at 8 months, with discharge home at 9 months of age
- Tongue reduction surgery at 14 months
- At 19 months of age
 - oral feeding, gastrostomy reversed
- pancreatic enzymes
- fat-soluble vitamins
- Lanreotide 30mg monthly deep S/C
- tumour surveillance negative
- no evident neurocognitive impairment

Conclusion

- The severity of CHI was discordant to that previously reported for this genotype of BWS
- Although clinical heterogeneity has been described in the different genotype of ICR2 hypomethylation (accounts for 50% of BWS), these cases were still diazoxide-responsive⁴

