Long-term safety and effectiveness of recombinant human growth hormone in Korean pediatric patients with growth disorders: 7-year interim analysis from LG Growth Study

Young Ah Lee1, Sochung Chung2, Young-Jun Rhee3, Jae Hyun Kim4, Hyun-Wook Chae5, Jae-Ho Yoo6, Jin-Ho Choi7, and Il Tae Hwang8

INTRODUCTION

LG Growth Study (LGS) aimed to evaluate the long-term safety and effectiveness of recombinant human growth hormone (rhGH) treatment in Korean pediatric patients.

OBJECTIVE

➢ To evaluate long-term safety and effectiveness of rhGH (Eutropin® Inj., Eutropin®Pen Inj., Eutropin®Plus Inj., and Eutropin®AQ Inj., LG Chem.) in pediatric patients with growth disorders including growth hormone deficiency (GHD), idiopathic short stature (ISS), Turner syndrome (TS), small for gestational age (SGA) and chronic renal failure (CRF).

METHODS

Study design

A multi-center, long-term, and prospective cohort study

Study population

Pediatric patients ≥2 years of age with GHD, ISS, TS, SGA and CRF

Written informed consent from the patients and their parents (or legal guardians) was obtained.

Statistical analysis

➢ Interim analysis has been conducted on 7-year accumulated data (from Nov. 2011 to Feb. 2019) of LGS.

➢ All adverse events (AEs) were reported for safety, and the effectiveness was assessed by height velocity (HV), height standard deviation score (HT SDS) and insulin like growth factor-1 (IGF-1).

RESULTS

Patients disposition

Enrolled: 3,144 (90%)
Excluded: 277

Safety Analysis

N=2,671 (99%)

Enrolled: 3,144 (90%)
Excluded: 277

Clinical characteristics at baseline

Table 1. Patients characteristics by indications (n/N) or mean ± SD

Total (N=3,144)	GHD (N=1,855)	ISS (N=245)	TS (N=1,236)	SGA (N=94)	CRF (N=5)
Gender					
Male (%)	1,084 (58%)	623 (34%)	221 (18%)	151 (16%)	1 (20%)
Female (%)	760 (42%)	1,232 (56%)	1,015 (82%)	39 (41%)	4 (80%)
Chronological age (yr)	7.8 ± 4.1	6.2 ± 4.4	8.5 ± 4.4	6.7 ± 4.5	8.0 ± 4.9
Body age (yr)	6.3 ± 2.4	7.7 ± 4.8	7.9 ± 4.2	6.2 ± 2.9	3.5 ± 1.6
BA - CA (yr)	-1.8 ± 1.2	-1.9 ± 1.4	-0.9 ± 1.3	-0.9 ± 1.5	-1.4 ± 1.2
Height SDS	-0.7 ± 0.8	-2.0 ± 0.8	-0.3 ± 0.8	0.1 ± 0.7	-2.5 ± 3.0
BMI SDS	-0.4 ± 1.1	-0.7 ± 1.1	0.4 ± 1.2	-0.9 ± 1.0	-0.8 ± 0.3
Tanner Stage	615/733 (96%)	136/200 (68%)	128/152 (64%)	102/125 (82%)	2/2 (100%)
Treatment Duration (yr)	3.8 (4.9)	2.4 (1.6)	5.2 (4.4)	2.7 (1.7)	4.1 (9.2)

*Data presented as n/N or mean ± SD

RESULTS (Cont’d)

Effectiveness on Height

➢ Height velocity was 8.9 ± 1.9, 8.7±1.6, 7.3±1.8, 9.0±1.6 and 8.3±2.1 cm/year at the first year of treatment in GHD, ISS, TS, SGA and CRF, respectively.

➢ A continuous improvement of height SDS was found in most patients regardless of their disease status, in particular, with a significant increase in height SDS from baseline to 4 years in patients with GHD (from −2.9 ± 0.9 to −1.3±1.1, p<0.0001) and TS (from −3.2±0.8 to −2.2±0.8, p<0.0001).

➢ Total IGF-1 SDS was significantly increased (from −0.7±1.1 to 0.8±1.7 at 12 months, p<0.0001) and maintained within 0 to 2 SDS throughout the study period.

CONCLUSIONS

➢ In the 7-year interim results of LGS, the incidence of AEs was low, and rhGH treatment was well-tolerated.

➢ During 4 years of rhGH treatment, significant improvement in height was confirmed in Korean pediatric patients with GHD and TS.