Evaluation of molecular characteristics and steroid metabolomics in a large cohort of children with 3β-hydroxydehydrogenase 2 deficiency

Tulay Gurun1, Cengiz Kara1, Melek Yildiz2, Eda C. Böthün, Goncaulg Haktakir1, Jen-Chieh Lin1, Lorna C. Gilliland2, Lise Barrand3, Mehmet Keskin4, Ahmet Anik5, Gomul Catli6, Ayla Guven7, Birgul Kireli8, Filiz Tutunculer8, Hasan Onal9, Serap Turan9, Teoman Akca5, Zeynep Atay5, Elizabeth S. Baranowski10, Gulyay C. Yilmaz11, Jamala Mammadova2, Aziz Azabzade1, Onder Yilmaz1, AghaRiza Aghayev5, Afra Alikan15, Cedic H.L. Shakleton16, Karl H. Storbeck17, Tugba Baris18, Wiebke Albrecht13, Bon-Chung Chiu1, Abdullah Berkelet1.

1. Martens University, School of Medicine, Department of Pediatric Endocrinology and Diabetes, Istanbul, Turkey; 2. Ondulüs Mektep University, Department of Pediatric Endocrinology and Diabetes, Erzurum, Turkey; 3. Marmara University, School of Medicine, Department of Biochemistry, Istanbul, Turkey; 4. Institute of Molecular Biology, Araceli Skiles, Taipei, Taiwan; 5. Institute of Molecular Medicine and Systems Research, NIBS, College of Medical & Dental Sciences, University of Birmingham, UK; 7. Section for Endocrinology, Department of Biochemistry, Western Cape, South Africa; 8. Galatasaray University, Department of Pediatric Endocrinology and Diabetes, Istanbul, Turkey; 9. Ankara University, School of Medicine, Department of Pediatric Endocrinology and Diabetes, Ankara, Turkey; 10. Ankara Candi University, School of Medicine, Department of Pediatric Endocrinology and Diabetes, Ankara, Turkey; 11. Health Science University, Faculty of Medicine, Zeynep Korkut Women and Children Diseases Education and Research Hospital, Pediatric Endocrinology, Istanbul, Turkey; 12. Eskişehir Osmangazi University, Department of Pediatric Endocrinology, Eskisehir, Turkey; 13. Department of Pediatrics, Division of Pediatric Endocrinology, Tokyo University School of Medicine, Edogawa, Tokyo, Japan; 14. Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul University, Istanbul, Turkey; 15. Western Bosphorus School of Medicine, Department of Medical Biokinemetics and Biostatistics, Bilkent, Ankara, Turkey; 16. Genel Gehirn Test Merkezi, Istanbul, Turkey; 17. Centro for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.

Table 1. Sequence variations and genotype-phenotype relationships in 31 children with 3βHSD2 deficiency

| Mutation | Phenotype Characteristics | Genotype
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>388G > T</td>
<td>Mild, first-mother absent</td>
<td>388G>T homozygote</td>
</tr>
<tr>
<td>388G > T</td>
<td>Mild, first-mother absent</td>
<td>388G>T heterozygote</td>
</tr>
<tr>
<td>388G > T</td>
<td>Mild, first-mother absent</td>
<td>388G>T compound</td>
</tr>
<tr>
<td>388G > T</td>
<td>Mild, first-mother absent</td>
<td>388G>T mixed</td>
</tr>
</tbody>
</table>

Results: Eleven homozygous (6 novel) in 31 children from 24 families (19 male/12 female; mean age: 6.6±5.1 years) were identified (Fig 2A). The missense variants 5% of wild-type 3βHSD2 activity in vitro were associated with non-salt losing clinical phenotype (Table 1, Fig 2B). There was a significant genotype-phenotype correlation in children with 3βHSD2 deficiency (Fig 3). The plasma ratio (of Preg+ to Preg−) was superior (17) to (17)/Preg−) to (17-HSD2 deficiency from the other groups. Heterozygote canister and functional 3βHSD2 deficiency patients showed higher Δ4 to Δ5 steroids than controls (Fig 4A, 4B, 5A). 11-oxygenated androgens were significantly lower in patients with 3βHSD2 deficiency (Fig 5B).

Conclusions:

- There is a good correlation between glucocorticoid and mineralocorticoid functions in vitro and biochemical 3βHSD2 deficiency, whereas genital and gonadal phenotype and behaviour are more complex and variable.
- In contrast to common knowledge, mineralocorticoid deficiency is not apparent in 1/3 of the cases.
- This 46, XY DSD is a "sexue non " in affected males whereas ambiguous genitalia is only rarely seen in 46, XX individuals due to decreased production of potent androgens via classical or alternative pathways.
- On the other hand, premature pubarche is very common on either sex 3βHSD2 deficiency.
- Spared mineralocorticoid function and unmutilated genitalia in females may lead to midadipose and subcutaneous fat deposition.
- The effect of 3βHSD2 mutation on body composition in children with 3βHSD2 deficiency is complex and variable.
- The role of REG3 in the pathogenesis of adrenal androgen excess needs to be elucidated.
- The correct diagnosis of 3βHSD2 deficiency is not only essential for the proper clinical management in infancy and childhood but also for the surveillance of gonadal function and fertility of the patients in later life.