Real-world Data from Electronic Monitoring of Adherence to Growth Hormone Treatment in Children with Growth Disorders: A Descriptive Analysis

Ekaterina Koledova1,2, Vincento Tornincasa1, Paula van Dommelen3
1Endocrinology Global Medical, Safety and CMO, Merck Healthcare KGaA, an affiliate of Merck KGaA, Darmstadt, Germany
2Merck Medical Device & Services, Area Trading S.A., an affiliate of Merck KGaA, 1267 Cosmo, Switzerland
3The Netherlands Organization for Applied Scientific Research TNO, Leiden, The Netherlands

INTRODUCTION
• Several factors can detrimentally affect the motivation of patients treated with recombinant human growth hormone (r-hGH).
• While traditional approaches to adherence monitoring rely on incidental sources or proxy methods, new eHealth-based ecosystems with automatic adherence recording and data transmissions allow proactive close monitoring of adherence and provide targeted support for individuals and groups of patients.
• Although many existing eHealth applications aim to address non-adherence they do not deliver the full potential of an adherence decision support system (ADSS). An ADSS is a form of clinical decision support that provides healthcare professionals (HCPs), patients and care providers with knowledge and person-specific information, presented at the appropriate times, to enhance health and health care.4
• The easypod™ electromechanical injection device was developed for patients with growth hormone deficiency to meet the requirements for a reliable, easily used, convenient injection device as part of an ADSS.

The easypod connect ecosystem comprises the connected pen device and online portal, as part of an adherence decision support system (ADSS).

AIMS
• To perform a real-world observational analysis of the easypod connect ecosystem to gather insights about recorded adherence and engagement to treatment in children with growth disorders from the start of treatment up to 48 months and the effect of age and sex on adherence.

METHODS
• This easypod connect ecosystem was used to collect longitudinal data to study adherence patterns in children treated with r-hGH between January 2007 and February 2019.
• Adherence (mg injected and prescribed) was categorised as high (≥85%), low/intermediate (≥50% <85%) or low (<50%) assessed at seven time points and explored by puberty status (nominal cut-offs at 10 years for girls and 12 years for boys) and sex.
• Dosage and frequency as per easypod settings were defined by the care team (HCPs) and data transmissions were instigated by the child, their guardian or by HCPs.
• Adherence was recorded for children transmitting data at each time point; no imputation was made for missing data or withdrawal.
• For each adherence cohort, the mean number of transmissions was calculated as a proxy measure of engagement in disease management.
• Descriptive statistics were used to describe differences over time in adherence (low/intermediate/high), by puberty status (pre-pubertal/pubertal), sex and mean transmissions.

RESULTS
• Longitudinal records were available for 13,553 children between January 2007 and February 2019 and different adherence patterns arose from the data analysis.
• Overall, more children had high adherence (N=9,578) than intermediate (N=2,922) or low adherence (N=966).
• The proportion of children with high adherence decreased from 87% (N=12,964) to 65% (N=9,297) across all time points up to Month 48; more children had high adherence than low/intermediate adherence at each time point (Figure 3).
• Compared with children in the low/intermediate adherence categories, children with high adherence also had the highest mean number of transmissions (Table 1).

DISCUSSION AND CONCLUSIONS
• This analysis shows the feasibility of monitoring hormone treatment adherence in large-scale ADSS observational databases.
• In a large real-world setting, we showed that most children treated with r-hGH via the easypod device had high adherence, but this can be affected by factors such as age and puberty.
• There was a trend for children/parents/guardians who were most engaged with the device to transmit data more often and to have high adherence.
• In common with other real-world research, there may be missing information, high levels of variability in treatment regimens, and there were several confounding or child-specific variables that could influence adherence but were not assessed.
• Combining easypod real-world adherence data with electronic health records can support the creation of an ADSS that can facilitate the assessment of outcomes and adherence plans to support integrated care.

ACKNOWLEDGMENTS
The authors would like to thank Jorge Aracena (University of Aarhus, Denmark) and Ethan Adkins for providing critical comments, and Ruben Michael Stanovnik (Ares Trading, an affiliate of Merck KGaA, Darmstadt, Germany) for performing the statistical analysis. Medical writing assistance was provided by Bozena Gruz, PhD. The authors would like to acknowledge the children, their families and the healthcare professionals who participated in the analysis.

DISCLOSURES
EF is an employee of Merck Healthcare KGaA, Darmstadt, Germany. VT is an employee of Ares Trading, an affiliate of Merck KGaA, Darmstadt, Germany. PSV has a consultancy agreement with Merck Healthcare KGaA, Darmstadt, Germany.

REFERENCES

Table 1. Overall Demographics

<table>
<thead>
<tr>
<th>Adherence Category</th>
<th>Adherence Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-pubertal</td>
<td>Pubertal</td>
</tr>
<tr>
<td>Overall</td>
<td>Overall</td>
</tr>
<tr>
<td>Boys, mean (SD) age, years</td>
<td>Boys, mean (SD) age, years</td>
</tr>
<tr>
<td>12.8 (6.3)</td>
<td>15.9 (6.9)</td>
</tr>
<tr>
<td>12.8 (6.3)</td>
<td>15.9 (6.9)</td>
</tr>
<tr>
<td>Number of boys</td>
<td>Number of boys</td>
</tr>
<tr>
<td>2026 / 3377</td>
<td>1387 / 1904</td>
</tr>
<tr>
<td>Girls, mean (SD) age, years</td>
<td>Girls, mean (SD) age, years</td>
</tr>
<tr>
<td>14.3 (7.9)</td>
<td>14.8 (7.6)</td>
</tr>
<tr>
<td>14.3 (7.9)</td>
<td>14.8 (7.6)</td>
</tr>
<tr>
<td>Number of girls</td>
<td>Number of girls</td>
</tr>
<tr>
<td>1078 / 157</td>
<td>587 / 348</td>
</tr>
<tr>
<td>Mean (SD) number of transmissions</td>
<td>Mean (SD) number of transmissions</td>
</tr>
<tr>
<td>10.2 (4.2)</td>
<td>7.2 (3.4)</td>
</tr>
<tr>
<td>Mean (SD) global adherence duration, days</td>
<td>Mean (SD) global adherence duration, days</td>
</tr>
<tr>
<td>599 (33)</td>
<td>60 (33)</td>
</tr>
</tbody>
</table>

Figure 1. The easypod connect Ecosystem

The easypod connect ecosystem comprises the connected pen device and online portal, as part of an adherence decision support system (ADSS).

ACKNOWLEDGMENTS
The authors would like to thank Jorge Aracena (University of Aarhus, Denmark) and Ethan Adkins for providing critical comments, and Ruben Michael Stanovnik (Ares Trading, an affiliate of Merck KGaA, Darmstadt, Germany) for performing the statistical analysis. Medical writing assistance was provided by Bozena Gruz, PhD. The authors would like to acknowledge the children, their families and the healthcare professionals who participated in the analysis.

DISCLOSURES
EF is an employee of Merck Healthcare KGaA, Darmstadt, Germany. VT is an employee of Ares Trading, an affiliate of Merck KGaA, Darmstadt, Germany. PSV has a consultancy agreement with Merck Healthcare KGaA, Darmstadt, Germany.

REFERENCES