Individual Patterns of Objectively Measured Adherence to Growth Hormone Treatment and its Effect on Growth in Prepubertal Children with Growth Hormone Deficiency

P. van Dommelen1, J.M. Wij1, E. Koledova1
1The Netherlands Organization for Applied Scientific Research TNO, Leiden, The Netherlands; 2Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; 3 Merck KGaA, Darmstadt, Germany

INTRODUCTION

The easypod™ electromechanical injection device works in combination with the easypod Connect platform (EPC) to record and transmit real time data based on the time, date and dose of Growth Hormone (GH) injections, for patients with growth disorders receiving GH treatment. This limits the risk of misreporting and allows physicians to accurately monitor patient behavior relating to adherence to treatment.

OBJECTIVES

To study individual patterns of adherence from start of treatment to 24 months and their effect on growth in prepubertal children with growth hormone deficiency (GHD).

METHODS

Data on adherence (=100% x number of injections taken/number of injections prescribed) and growth uploaded to the easypod Connect platform or collected by the Easypod Connect Observational Study (ECOS; a 5-year, Phase IV open-label study) were included.1

Inclusion criteria for both adherence and growth were age before onset of puberty (<10 years in girls and <12 years in boys). Additional inclusion criteria for growth were GHD and naïve to GH treatment (ECOS study).

Latent class mixed models (LCMM) is a model-based clustering and classification technique applied in a wide range of fields including machine learning.

In our study, LCMM were applied with longitudinal adherence as outcome and time and centered time squared in the model. This model groups the patients into classes based on their individual adherence pattern over time.

Descriptive statistics for the adherence classes were provided in three categories (low ≤56%, medium >56–85%, high >85%).3

Descriptive statistics for the adherence classes were provided in three categories (low ≤56%, medium >56–85%, high >85%).3

Linear regression analyses were performed to compare change in height standard deviation score (H SDS) between adherence classes from start of treatment up to 6–24 months. Figure 1.

RESULTS

Figure 1. Data sources for analysis

Table: Data sources for analysis

<table>
<thead>
<tr>
<th>Data Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPC database</td>
<td>Patients with adherence data before onset of puberty: n=6588 in 0–6 months, n=3886 in 12–18 months, n=2068 in 18–24 months</td>
</tr>
<tr>
<td>ECOS study</td>
<td>Patients with adherence data before onset of puberty: n=6588 in 0–6 months, n=3886 in 12–18 months, n=2068 in 18–24 months</td>
</tr>
</tbody>
</table>

Patients with adherence data before onset of puberty:

- EPC database: n=6588 in 0–6 months, n=3886 in 12–18 months, n=2068 in 18–24 months
- ECOS study: n=6588 in 0–6 months, n=3886 in 12–18 months, n=2068 in 18–24 months

Patients with height data before onset of puberty:

- EPC database: n=3891 in 6–12 months, n=179 in 12–18 months, n=147 in 18–24 months
- ECOS study: n=3891 in 6–12 months, n=179 in 12–18 months, n=147 in 18–24 months

0–6 Months 6–18 Months 18–24 Months

- Class 1: medium, low, medium adherence over time
- Class 2: high adherence over time
- Class 3: low, medium, medium adherence over time

- Class 1 (n=342) had on average medium adherence between 0–6 months, low adherence between 6–18 months and medium adherence between 18–24 months. Class 2 (n=5968) maintained a high adherence. Class 3 (n=278) had on average low adherence between 0–6 months, and adherence consistently increased to medium adherence at 18–24 months.

- Significant differences in change in H SDS between 0–18 months (change H SDS= -0.52, p=0.002) and 0–24 months (change H SDS= -0.45, p=0.03) were found in class 1 (medium 0–6 months, low 6–18 months and then medium 18–24 months adherence) compared to class 2 (high adherence between 0–24 months). No other significant differences were found.

CONCLUSIONS

- This is the first time that a clustering and classification technique has been applied to analyze the data collected in ECOS and EPC with adherence profiles and assessment of outcomes.

- Our study shows that monitoring patterns of adherence over time is important, because poor adherence, especially between 6 and 18 months after start of treatment, can lead to suboptimal clinical outcomes.

- The traditional approach to monitoring adherence is generally based on self-reported data, which is prone to recall and social desirability bias.

New eHealth-based ecosystems with automatic adherence recording and data transmissions, such as the easypod™ connect system, allow proactive close monitoring of adherence, which may improve adherence and subsequent outcomes.

REFERENCES


ACKNOWLEDGMENTS

We thank all participants and investigators who contributed to the ECOS study and thank Yan Zhang for assistance with data sources and George Stoyanov for advice on data flow. This study was sponsored by Merck KGaA, Darmstadt, Germany. Editorial support was provided by David Candish of InScience Communications, UK, and funded by Merck KGaA, Darmstadt, Germany.

DISCLOSURES

PvD is an advisor to Merck KGaA. JMM is a member of advisory boards of Merck KGaA, OPKO, Biomarin, Asterra Zentaris, Ammonett and Agios. EK is an employee of Merck KGaA.

Presented at ESPE 2019, 19-21 September, 2019, Vienna, Austria