Novel pubertal references for girls using ultrasound to stage breast development. The Bergen Growth Study 2.

Ingvid Særvold Bruserud1,2, Mathieu Roelants3, Ninnie B. Oehme1,2, André Madsen1,4, Geir Egil Eide1,5, Robert Bjerknes1,2, Karen Rosendahl1,6 and Pétur B. Júlíusson1,2,7

1 University of Bergen, Bergen, Norway 2 Department of Pediatrics, Haukeland University Hospital, Bergen, Norway 3 Department of Public Health and Primary Care, KU Leuven - University of Leuven, Belgium 4 Hormone Laboratory, Haukeland University Hospital, Bergen, Norway 5 Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway 6 Department of Health Registries, Norwegian Institute of Public Health, Bergen, Norway 7 Contact: Ingvid Særvold Bruserud; Department of Clinical Science; University of Bergen; E-mail: ingvid.bruserud@uib.no

Conflict of interest: none Poster Number: P1 - 258 Topic: Puberty

INTRODUCTION

Discriminating adipose tissue from glandular tissue is challenging when assessing breast development clinically. Breast ultrasound allows for a direct examination of the mammary gland and facilitates staging of breast maturation on a scale from 0 to 5, in which stage 2 (US B2) marks the onset of breast development. To date, no normative data have been reported for ultrasound breast staging (US B), and has not been systematically compared to Tanner B staging in a large sample.

OBJECTIVES

To present novel pubertal references for US B, and the first references for Tanner breast (B) and pubic hair (PH) stages, and menarche for girls living in Norway, and to compare two methods to assess pubertal breast development (US B and Tanner B). Further we compare age at menarche in the current study with the first Bergen Growth Study (BGS1 in 2003-06).

METHODS

A cross-sectional sample of 703 girls (6.1 - 16.2 years) living in Bergen, Norway, were included into the Bergen Growth study 2 in 2016 and 2017. The girls were examined with ultrasound to determine US B (n = 696). Tanner B (n=700) and PH (n=372) stages were assessed clinically and menarcheal status was recorded (n=643). Ages at entering US B1-5, Tanner B and PH pubertal stages 2-5, and menarche were estimated using generalized linear (probit) and generalized additive models (GAM). Agreement in pubertal breast staging done by US B and Tanner B was examined using kappa statistics with linear weights. Logistic regression with age as covariate was used to compare if age at menarche had advanced since BGS1. The Nordic girls only were selected for this analyses.

CONCLUSION

The comparison of US B and Tanner B indicated good overall agreement in determining glandular maturation throughout puberty, although ultrasound enables detection of changes in breast tissue ahead of clinically identifiable visual or palpable changes. The estimated ages at onset of breast development, PH and menarche in our study are in accordance with recent European studies. A decrease of 2.8 months in age at menarche was observed between BGS1 and BGS2 and warrants further surveillance of pubertal development in Norway.

REFERENCE