Cardiopulmonary exercise testing, body composition and metabolic status after allogeneic hematopoetic stem cell transplantation in childhood

Kathleen De Waele1, Lloyd Tack1, Ilse Coomans2, Catharina Dhooge3, Victoria Bordoni2, Kaatje Toye2, Martine Cools4, Kristof Vandekerckhove4

1Pediatric endocrinology, Ghent University Hospital, Ghent, Belgium; 2Pediatric cardiology, Ghent University Hospital, Ghent, Belgium; 3Pediatric hematology & oncology, Ghent University Hospital, Ghent, Belgium

KEY MESSAGES
✓ An unfavorable metabolic profile after alloHSCT is associated with low physical fitness
✓ Emphasis on a healthy, active lifestyle remains important long after alloHSCT

INTRODUCTION
Well-known long-term complications of alloHSCT in childhood include endocrine system damage and secondary malignancies. In addition, survivors of childhood alloHSCT are at risk of cardiovascular (CV) and metabolic disturbances.

OBJECTIVES
Cross-sectional investigation of exercise performance by cardiopulmonary exercise testing (CPET) and metabolic parameters in boys and girls, who underwent alloHSCT for a hematological malignancy in childhood, in comparison to healthy peers.

METHODS
Cardiopulmonary exercise testing: Maximal oxygen consumption (VO2peak), maximal load (PPeak), exercise duration (time), VE/VCO2 slope, oxygen uptake efficiency slope (OUES) ventilatory anaerobic threshold (VAT)
DXA: Whole body fat and lean mass
Hormones: leptin/adiponectin ratio (L/A ratio), homeostatic model assessment for insulin resistance (HOMA-IR)

Participants:
Inclusion criteria:
- Boys and girls of 15 to 25 years
- AlloHSCT: ≥2-year interval since alloHSCT
Cases:
- AlloHSCT: n=21 (10 males, 11 females)
- Controls: n=21 (11 males, 10 females)
Diagnosis and treatment:
- Age at alloHSCT: 9.2±4.91 years.
- Diagnosis:
 ▪ Acute lymphoblastic leukemia: n=15
 ▪ Acute & chronic myeloid leukemia: n=2 & n=2
 ▪ Anaplastic large cell lymphoma and myelodysplastic syndrome: n=1 & n=1
 ▪ Myeloablative conditioning regimens:
 ▪ Total body irradiation based (1200 cGy): n=14
 ▪ Busulfan based: n=7
 ▪ +Cytopharma (≥ 120 mg/kg): n=10
 ▪ Acute GVHD (grade II to IV): n=8
 ▪ Chronic GVHD: n=1

RESULTS

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Patients</th>
<th>Controls</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Males</td>
<td>Females</td>
<td>Males</td>
</tr>
<tr>
<td>Age at evaluation (y)</td>
<td>19 ± 3</td>
<td>20 ± 3</td>
<td>20 ± 3</td>
</tr>
<tr>
<td>Interval (y)</td>
<td>9.3 ± 5.06</td>
<td>12.5 ± 3.56</td>
<td>NA</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>170.2 ± 6.72</td>
<td>164.9 ± 4.67</td>
<td>171.9 ± 5.05</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>20.0 ± 2.37</td>
<td>22.3 ± 3.72</td>
<td>21.3 ± 2.71</td>
</tr>
<tr>
<td>BSA (m²)</td>
<td>1.61 ± 0.14</td>
<td>1.64 ± 0.15</td>
<td>1.68 ± 0.13</td>
</tr>
</tbody>
</table>

L/A ratio and whole body fat percentage were negatively correlated with predicted VO2 percentage
No correlation was seen with HOMA-IR

CONCLUSIONS
Adolescents and young adults after HSCT have lower maximal exercise performance and a less favorable metabolic profile in comparison with healthy controls. Leptin/adiponectin ratio and whole body fat percentage are negatively correlated with physical fitness, stressing the importance of healthy lifestyle promotion and physical rehabilitation in this patient population.

Contact: kathleen.deweaele@ugent.be