A Novel Mutation of INSR Gene in a Child with Type A Insulin Resistance

Federica Verdecchia1, Neşe Akcan1, Antonia Dastamani2, Kate Morgan3, Robert Semple3, Pratik Shah1, 2

1. Endocrinology Department, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
2. Genetics and Epigenetics in Health and Disease Section, Genetics and Genomics Medicine Program, UCL GOS Institute of Child Health, London, UK
3. Chair of Translational Molecular Medicine, Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK

Background

- Mutations of insulin receptor gene (INSR) lead to a wide spectrum of inherited insulin resistance syndromes.
- Type A insulin resistance is one of the these syndromes which is inherited autosomal dominant and leads to mild clinical symptoms after puberty (1).

Objective

- To report a novel mutation of INSR gene mutation in a case of Type A insulin resistance who presented with transient neonatal diabetes and then episodes of hypoglycaemia and hyperglycaemia during childhood.

Case:

- Full-term Afro-Caribbean female infant, of birth weight 1.89 kg, developed transient neonatal diabetes with negative genetic testing (microarray, TNDM 6q methylation analysis).
- At the age of 2.8 years, she presented with episodes of postprandial and fasting hypoglycaemia. Her examination showed satisfactory growth, lipodystrophy, acanthosis nigricans and isolated thelarche.
- Investigations demonstrated that the child after 12 hours of fasting developed hypoglycaemia (glucose 2.8 mmol/L), with inappropriately raised insulin level of 5.4 mU/L.
- Her oral glucose tolerance test (OGTT) (Table 1) showed excessively high levels of insulin throughout the test (>300 mU/L) along with hypoglycaemia (glucose 1.6 mmol/L) at 2.5 hours of the test. She had dietary modification with some improvement in hypoglycaemia.
- She continued to have postprandial hypoglycaemia and was started on Acarbose 12.5mg TDS (upto 25mg TDS) at the age of 5 years. She had negative genetic analysis for Familial Lipodystrophy (LMNA and PPARG genes) and Hyperinsulinism (ABCC8 and KCNJ11 genes).
- She was stabilized on acarbose treatment (upto 25mg TDS) for the management of PPHH that lasted for 2.5 years.
- Subsequently, she developed intermittent episodes of hyperglycaemia along with postprandial and fasting episodes of hypoglycaemia recorded persistently on continuous glucose monitoring.
- HbA1c and fasting lipids remained within the normal range.
- Suppressed androgens and pelvic ultrasound with pre-pubertal appearance of her internal genitalia until the age of 8.7 years.
- Normal baseline pituitary function.
- LHRR showed predominant FSH response.
- Treatment of metformin along with carbohydrate diet modification and corn starch started at the age of 7 years not only improved fasting tolerance but also episodes of hyperglycaemia and post-prandial hypoglycaemia.
- Genetic testing identified a novel heterozygous deletion of exon 22 in INSR gene.

<table>
<thead>
<tr>
<th>Table 1: Oral Glucose Tolerance test (OGTT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 2 years and 8 months</td>
</tr>
<tr>
<td>Time (Min)</td>
</tr>
<tr>
<td>Blood glucose (mmol/L)</td>
</tr>
<tr>
<td>Insulin (mU/L)</td>
</tr>
<tr>
<td>Age: 4 years</td>
</tr>
<tr>
<td>Time (Min)</td>
</tr>
<tr>
<td>Blood glucose (mmol/L)</td>
</tr>
<tr>
<td>Insulin (mU/L)</td>
</tr>
</tbody>
</table>

Conclusion:

- The present case details the clinical features of a patient with genetically proven Type A insulin resistance.
- The major features of this condition usually becoming clinically apparent in adolescence (2).
- Early age manifestation, neonatal diabetes and also PPHH can be another presentation of this disease.
- The remarkable point of the current case report is early different clinical presentation of Type A-IR with a novel INSR mutation that illustrates a range of different glycaemic presentations, and how IR can masquerade as other disorders.
- Children with this can be quite challenging to manage using pharmacotherapy and dietary modification (3).
- Further accumulation of genetically proven cases and long-term treatment outcomes following early diagnosis are required to understand the dynamics of this disease.

References