Prevalence and predicting factors of endocrine dysfunction in children with NF1 and optic gliomas.

Santon C1, Perrotta S1, Sclicioli M1, Cirillo M2, Quaglletta L3, Cinalli G4, Cioffi D5, Di Iorgi N6, Magnhie M6, Galizia A6, Parpaglioli M7, Messa F7, De Sanctis S8, Vannelli S9, Marzullo P1, Miraglia del Giudice E1, Grando An

OBJECTIVES

The aim of this study is to evaluate the endocrinological complications of OPGs involving the chiasm in children with NF1.

METHODS

We retrospectively evaluated children with NF1 and OPG seen between 1997 and 2017 at four Italian institutions (University vanvitelli, naples, santobono Hospital, naples, Mayer Hospital, Florence, Gaslini Hospital, Genova, Regn Margherita Hospital, Turin. We studied those endocrinopathies occurring before radio- or chemo-therapy or surgery. OPGs were classified according to the modified Dodge classification (MDC).

RESULTS

The median age at diagnosis of NF1 was 1.8 years (range 0.1-12.8) and at diagnosis of OPGs was 4.2 years (range 0.4-13.7). Median follow up was 9 years (range 0.2-35). 109/117(93.1%) OPGs were MDC1, 73/117(62.3%) MDC2, and 53/117(45.2%) MDC3/4. The chiasm was involved in 73(62%) tumors, hypothalamus in 37(32%). Endocrine disorders were identified in 35(29.9%) children. Median age at diagnosis of endocrinopathies was 7.8 years (range 1.4-12.9 years). Among patients with endocrine disorders, the proportion of patients who later underwent any treatment for OPGs (both chemotherapy and/or surgery) was higher than in those without endocrine disorders (65.8%vs24.4%; p<.0001). Considering the entire population the cumulative proportion of patients free from endocrine disease at 10 years of follow-up was 65.9%. Endocrine free survival declined up to 8 years post OPG diagnosis. Hypothalamic involvement was the stronger single independent predictor of endocrine disorders (HR: 7.48(95%CI:3.5-15.85),p<0.0001). Another independent predictor was age at OPGs diagnosis <5 years (HR:2.51(1.09-5.8),p:0.03). Central precocious puberty (CPP) was diagnosed in 25 (14 males) children (71.4%) (median age 8 years;range:3.5-10.5), followed by GHD in 4(11.4%) children (median age 9.4 years;range 8.4-11.5), diencephalic syndrome in 4(11.4%) children (median age 4.6 years;range 1.4-5.8), growth hormone hypersecretion in 2(5.7%) children (median age 4 years; range 3.9-4.1).

ENDOCRINE DISORDERS

Endocrine disorders are common in patients with NF1 and OPGs independently from any treatment. Hypothalamic involvement and young (<5 years) age at OPGs diagnosis were predictors of endocrine disorders. CPP was the most prevalent diagnosis while GHD was not common as previously described. A high index of suspicion for very rare endocrine disorders such as diencephalic syndrome and growth hormone hypersecretion is important in these patients, especially in younger ones. Patients with OPGs and endocrine disorders, because of the frequent hypothalamic involvement, need a particularly careful follow-up as they are more at risk to need treatment, both CT and surgery.

CONCLUSIONS

Endocrine disorders are common in patients with NF1 and OPGs independently from any treatment. Hypothalamic involvement and young (<5 years) age at OPGs diagnosis were predictors of endocrine disorders. CPP was the most prevalent diagnosis while GHD was not common as previously described. A high index of suspicion for very rare endocrine disorders such as diencephalic syndrome and growth hormone hypersecretion is important in these patients, especially in younger ones. Patients with OPGs and endocrine disorders, because of the frequent hypothalamic involvement, need a particularly careful follow-up as they are more at risk to need treatment, both CT and surgery.

BACKGROUND

Children with neurofibromatosis type 1 (NF1) have an increased risk of developing optic pathway gliomas (OPGs) during childhood. Although these tumors usually have a benign course, some cases result in significant clinical symptoms, including endocrinological disorders.

RESULTS

The median age at diagnosis of NF1 was 1.8 years (range 0.1-12.8) and at diagnosis of OPGs was 4.2 years (range 0.4-13.7). Median follow up was 9 years (range 0.2-35). 109/117(93.1%) OPGs were MDC1, 73/117(62.3%) MDC2, and 53/117(45.2%) MDC3/4. The chiasm was involved in 73(62%) tumors, hypothalamus in 37(32%). Endocrine disorders were identified in 35(29.9%) children. Median age at diagnosis of endocrinopathies was 7.8 years (range 1.4-12.9 years). Among patients with endocrine disorders, the proportion of patients who later underwent any treatment for OPGs (both chemotherapy and/or surgery) was higher than in those without endocrine disorders (65.8%vs24.4%; p<.0001). Considering the entire population the cumulative proportion of patients free from endocrine disease at 10 years of follow-up was 65.9%. Endocrine free survival declined up to 8 years post OPG diagnosis. Hypothalamic involvement was the stronger single independent predictor of endocrine disorders (HR: 7.48(95%CI:3.5-15.85),p<0.0001). Another independent predictor was age at OPGs diagnosis <5 years (HR:2.51(1.09-5.8),p:0.03). Central precocious puberty (CPP) was diagnosed in 25 (14 males) children (71.4%) (median age 8 years;range:3.5-10.5), followed by GHD in 4(11.4%) children (median age 9.4 years;range 8.4-11.5), diencephalic syndrome in 4(11.4%) children (median age 4.6 years;range 1.4-5.8), growth hormone hypersecretion in 2(5.7%) children (median age 4 years; range 3.9-4.1).

ENDOCRINE DISORDERS

Endocrine disorders are common in patients with NF1 and OPGs independently from any treatment. Hypothalamic involvement and young (<5 years) age at OPGs diagnosis were predictors of endocrine disorders. CPP was the most prevalent diagnosis while GHD was not common as previously described. A high index of suspicion for very rare endocrine disorders such as diencephalic syndrome and growth hormone hypersecretion is important in these patients, especially in younger ones. Patients with OPGs and endocrine disorders, because of the frequent hypothalamic involvement, need a particularly careful follow-up as they are more at risk to need treatment, both CT and surgery.

CONCLUSIONS

Endocrine disorders are common in patients with NF1 and OPGs independently from any treatment. Hypothalamic involvement and young (<5 years) age at OPGs diagnosis were predictors of endocrine disorders. CPP was the most prevalent diagnosis while GHD was not common as previously described. A high index of suspicion for very rare endocrine disorders such as diencephalic syndrome and growth hormone hypersecretion is important in these patients, especially in younger ones. Patients with OPGs and endocrine disorders, because of the frequent hypothalamic involvement, need a particularly careful follow-up as they are more at risk to need treatment, both CT and surgery.

OBJECTIVES

The aim of this study is to evaluate the endocrinological complications of OPGs involving the chiasm in children with NF1.

METHODS

We retrospectively evaluated children with NF1 and OPG seen between 1997 and 2017 at four Italian institutions (University vanvitelli, naples, santobono Hospital, naples, Mayer Hospital, Florence, Gaslini Hospital, Genova, Regn Margherita Hospital, Turin. We studied those endocrinopathies occurring before radio- or chemo-therapy or surgery. OPGs were classified according to the modified Dodge classification (MDC).

RESULTS

The median age at diagnosis of NF1 was 1.8 years (range 0.1-12.8) and at diagnosis of OPGs was 4.2 years (range 0.4-13.7). Median follow up was 9 years (range 0.2-35). 109/117(93.1%) OPGs were MDC1, 73/117(62.3%) MDC2, and 53/117(45.2%) MDC3/4. The chiasm was involved in 73(62%) tumors, hypothalamus in 37(32%). Endocrine disorders were identified in 35(29.9%) children. Median age at diagnosis of endocrinopathies was 7.8 years (range 1.4-12.9 years). Among patients with endocrine disorders, the proportion of patients who later underwent any treatment for OPGs (both chemotherapy and/or surgery) was higher than in those without endocrine disorders (65.8%vs24.4%; p<.0001). Considering the entire population the cumulative proportion of patients free from endocrine disease at 10 years of follow-up was 65.9%. Endocrine free survival declined up to 8 years post OPG diagnosis. Hypothalamic involvement was the stronger single independent predictor of endocrine disorders (HR: 7.48(95%CI:3.5-15.85),p<0.0001). Another independent predictor was age at OPGs diagnosis <5 years (HR:2.51(1.09-5.8),p:0.03). Central precocious puberty (CPP) was diagnosed in 25 (14 males) children (71.4%) (median age 8 years;range:3.5-10.5), followed by GHD in 4(11.4%) children (median age 9.4 years;range 8.4-11.5), diencephalic syndrome in 4(11.4%) children (median age 4.6 years;range 1.4-5.8), growth hormone hypersecretion in 2(5.7%) children (median age 4 years; range 3.9-4.1).

CONCLUSIONS

Endocrine disorders are common in patients with NF1 and OPGs independently from any treatment. Hypothalamic involvement and young (<5 years) age at OPGs diagnosis were predictors of endocrine disorders. CPP was the most prevalent diagnosis while GHD was not common as previously described. A high index of suspicion for very rare endocrine disorders such as diencephalic syndrome and growth hormone hypersecretion is important in these patients, especially in younger ones. Patients with OPGs and endocrine disorders, because of the frequent hypothalamic involvement, need a particularly careful follow-up as they are more at risk to need treatment, both CT and surgery.