EFTUD2 gene deficiency disrupts osteoblast maturation and inhibits chondrocyte differentiation via activation of the p53 signaling pathway

Jing Wu, Yi Yang, You He, Qiang Li, Xu Wang, Chengjun Sun, Lishun Wang, Yu An, Feihong Luo
Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, Shanghai, China

INTRODUCTION
Mandibulofacial dysostosis with microcephaly (MFDM, MIM# 610536) is a rare syndrome with a wide spectrum of congenital anomalies, which is characteristic of multiple skeletal anomalies comprising craniofacial anomalies/dysplasia, microcephaly, dysplastic ears, choanal atresia and short stature [1-2]. Heterozygous loss of function variants of the elongation factor Tu GTP-binding domain-containing 2 gene (EFTUD2, MIM# 603892) were previously reported in MFDM, and considered to be the cause of MFDM [3-4]. However, the mechanism underlying EFTUD2-associated skeletal dysplasia remains unclear [1, 5].

RESULTS
Clinical and genetic identification of the patient

Figure 1. A) The proband presented with microcephaly (head circumference of 45 cm, <P3), severe micrognathia, arched eyebrows, everted lips, broad nasal bridge, abnormal ear structures with hearing loss. B) Malformed structures of the external and middle ear on the left head and temporal bones via CT scan at 37 months of age. R: right; L: left. C) Pedigrees and EFTUD2 variant identified by family trio whole-exome sequencing which showed a de novo heterozygous mutation c.1030_1031delTG (p.Trp344fs*2) in EFTUD2 (NM_001258353.1) in the proband.

eftud2 knockout disrupted bone and cartilage development in zebrafish

Figure 2. A-C) Lateral view of larvae treated with eftud2 TALEN mRNA (−/−) at 3 dpf and 5 dpf, showing dysplasia formation in Meckel's cartilage, ceratohyals, ethmoid bones and otolith loss.

EFTUD2 knockdown and knockout resulted in TP53 pathway activation in vitro and in vivo

Figure 3 A) Mandible bone of wild-type adults (WT) scanned by synchrotron radiation X-ray microtomography. B) The heterozygous F2 generation (+/−) exhibited a shortened mandibular bone (arrows).

Figure 4 A) HCO cells with EFTUD2 knock-down (sh2) had a higher expression of phosphorylated P53 (P-P53) protein than the nontransfected (control) and shNT groups. B) Expression of relevant genes in P53 pathway were higher in the eftud2 (−/−) than WT (+/+) C) The expression of P-P53 in eftud2 (−/−) larvae was slightly elevated at 4 dpf. D) The survival rate among the curved F3 generation hybridizing from eftud2 heterozygous mutants (EF3 control), EF3 controls injected with EFTUD2 normal mRNA (EN mRNA) and p53 morpholinio (P3-MO) could decrease the mortality of those curved larvae at 4 dpf and 5 dpf (*: P<0.05, **: P<0.01, and ***: P<0.001).

CONCLUSIONS
We identify a novel de novo frameshift EFTUD2 gene variant (c.1030_1031delTG, p.Trp344fs*2) in a Chinese MFDM patient, and established an EFTUD2 deficiency model in vitro and in vivo. Evidence of cell lines and zebrafish model suggested TP53 signaling pathway was activated due to EFTUD2 disruption. Our findings showed that the EFTUD2 gene could impact the proliferation and differentiation of osteoblasts and chondrocytes, suggesting that premature osteoblasts and chondrocyte differentiation could be responsible for the pathogenesis of MFDM. Further studies on the specific mechanisms involved are necessary in the future.

REFERENCES

CONTACTS
JING WU
PHONE: +86 15221213403 EMAIL: wujing19881230@163.com ADDRESS: 399 Wanyuan Road, Minhang District, Shanghai, China

ACKNOWLEDGEMENTS
The authors thank all of the staff at the zebrafish laboratory of Children's Hospital at Fudan University and the School of Basic Medical Sciences, Fudan University, for their invaluable contributions to this project.