
Yohei Masunaga1, Takanobu Inoue2, Kaori Yamato3, Yasuko Fujisawa4, Yasuhiro Sato5, Yuki Kawashima-Sonyoama6, Yasuhisa Ohata7, Noriyuki Namba8-10, Maki Fukumi9, Hiromoto Saito5, Masayo Kagami2, Tsutomu Ogata1

1. Department of Pediatrics, Hamamatsu University School of Medicine, Japan; 2. Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Japan; 3. Department of Pediatrics, Tkyo University School of Medicine, Japan; 4. Division of Pediatrics and Perinatology, Faculty of Medicine Tottori University, Japan; 5. Department of Pediatrics, Osaka University Graduate School of Medicine, Japan; 6. Department of Pediatrics, Osaka Hospital, Japan Community Healthcare Organization (JCHO), Japan; 7. Department of Pediatrics, Hamamatsu University School of Medicine, Japan.

Background

IGF2 is a paternally expressed gene playing a pivotal role in body growth (Fig.1). Both compromised IGF2 expression caused by H19/IGF2:IG-DMR epimutations (hypo-methylation) and IGF2 mutations on paternal allele lead to Silver-Russell syndrome (SRS) (Fig 3), though a certain degree of phenotypic difference has been implicated.

We report six Japanese patients with IGF2 mutations and compare clinical findings between the two groups including literature cases.

Clinical findings of six patients and molecular studies

All six patients showed growth restriction, and their major clinical findings are shown as below. We performed next generation sequencing-based comprehensive mutation analyses and identified various IGF2 mutations (Fig.2). All the heterozygous mutations resided on the paternally inherited allele, confirmed by SalI/SmaI digestion.

Phenotypic comparison

Phenotypic comparison between apparently non-mosaic 14 patients with IGF2 mutations reported to date1-6, including Case 1-5, and patients with H19/IGF2:IG-DMR epimutations are shown in Table 1. IGF2 mutations resulted in 1) SRS with high Nephine-Harbinson score (≥ 5/6), 2) low frequency of hemihypoplasia, 3) high frequency of feeding difficulty, 4) mild degree of relative macrocephaly, 5) occasional development of limb malformations, 6) high frequency of cardiac anomalies, 7) high frequency of developmental delay, 8) high serum IGF-I values, and 9) low serum IGF-II values.

Table. Summary of clinical features in patients with apparently non-mosaic IGF2 mutations and those with H19/IGF2:IG-DMR epimutations.

Discussion

The present study indicates that IGF2 mutations are associated with characteristic clinical features. The results are primarily explained by the mosaic condition of epimutations and the non-mosaic condition of IGF2 mutations, and by the H19/IGF2:IG-DMR methylation pattern dependent IGF2 expression in most tissues and the biparental IGF2 expression in the brain and liver (Fig.3, 4).

Fig 1. IGF2 expression

Fig 2. Identified IGF2 mutations

Fig 3. IGF2 expression in most tissues

Fig 4. IGF2 expression in Brain and Liver

Table. Summary of clinical features in patients with apparently non-mosaic IGF2 mutations and those with H19/IGF2:IG-DMR epimutations.