

#### INTRODUCTION

- Congenital Hyperinsulinism (HI): a monogenic disorder characterised by inappropriate insulin secretion despite low blood glucose.
- Commonly diagnosed in infancy (<12 months), high birth weight is often a feature.
- Characteristics of childhood HI diagnoses (>12 months) are not well studied.

#### AIM

- 1. Compare prevalence, clinical and genetic features of HI diagnosed in childhood to infancy.
- 2. Determine if childhood diagnoses are driven by ascertainment or true later disease onset.

### METHOD

HI referrals genetically tested using targeted sequencing, n = 2058

Infancy (<12 mnths) n = 1885

Childhood (12 mnths-16 years) n = 173

Comparisons for 3 most common childhood genetic causes:

 Prevalence, clinical and genetic features

## Congenital hyperinsulinism diagnosed in childhood can have a monogenic aetiology

J.J. HOPKINS<sup>1</sup>, A. CHILDS<sup>1</sup>, T.I. HEWAT<sup>1</sup>, K.A. PATEL<sup>1,2</sup>, J.A.L. HOUGHTON<sup>2</sup>, M.B. JOHNSON<sup>1</sup>, T.W. LAVER<sup>1</sup> & S.E. FLANAGAN<sup>1</sup>

- 1. University of Exeter Medical School, Exeter, UK
- 2. Department of Molecular Genetics, Royal Devon & Exeter Hospital, Exeter, UK



#### RESULTS



Figure 1: Pie-charts showing the results of genetic analyses for patients diagnosed in infancy (left) and those diagnosed in childhood (right).

# ABCC8 birth weight comparison p = 0.002n = 891n = 8Childhood

Figure 2: A box and whisker plot of birth weight z-scores corrected for gestational age for patients diagnosed in infancy and in childhood with ABCC8 mutations. Patients diagnosed in infancy had a significantly higher median birth weight than those diagnosed in childhood. P = 0.002, Mann-Whitney.

Infancy

- A genetic cause was identified for 41/173 (24%) of Exeter referrals diagnosed with HI in childhood, compared to 76% of infancy diagnoses (Figure 1).
- Mutations were identified in 8 different genes for childhood diagnoses, with ABCC8, GCK and GLUD1 being the most common (n = 33/41).
- Significantly lower median birth weight z-score for childhood diagnoses with ABCC8 mutations (-0.44), compared to infancy diagnoses (1.5) (Figure 2).
  - Lower birth weight suggests these may be true childhood disease onset.
- A novel genotype-phenotype correlation for GLUD1-HI, those diagnosed in childhood more likely to have mutations in the catalytic domain (73%) of the enzyme than the allosteric domain (27%) (Figure 3).
  - o Indicating a true later disease onset for childhood *GLUD1* diagnoses.
- For GCK-HI, 86% (6/7) of childhood diagnoses had mutations also identified in infancy diagnoses. Both cohorts had a similar median birth weight.
  - Suggesting ascertainment is also a factor for childhood diagnoses.

#### GLUD1



Figure 3: Diagram depicting the exons of GLUD1 and the locations of the catalytic and allosteric domains. The association is statistically significant, P = 0.04, Fisher's exact test.

#### CONCLUSIONS

HI diagnosed in childhood can be monogenic.

Childhood diagnoses are driven by both ascertainment and true later disease onset.

- Evidence of true childhood disease onset for ABCC8-HI.
- Novel genotype-phenotype correlation for GLUD1-HI indicates a link between mutation site and age at diagnosis.
- Evidence of ascertainment issues for GCK-HI.

### CONTACT INFORMATION

Jasmin Hopkins

Email: jh1004@Exeter.ac.uk Twitter: @JJ\_Hopkins\_

www.hyperinsulinismgenes.org

