

LONG-TERM EFFICACY AND SAFETY OF RHGH IN CHILDREN WITH SHOX DEFICIENCY: PRELIMINARY DATA OF A NATIONAL ITALIAN SURVEY.

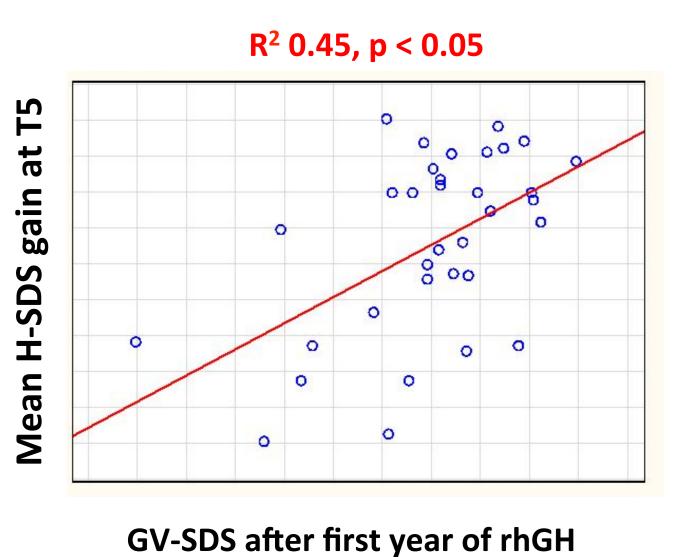
Patrizia Bruzzi¹, Silvia Vannelli², Emanuela Scarano³, Maria Elisabeth Street⁴, Maria Parpagnoli⁵, Adolfo Andrea Trettene⁶, Malgorzata Wasniewska⁷, Simona Filomena Madeo¹, Lorenzo Iughetti¹ on behalf of ISPED Study Group on Growth Factors and Puberty

¹Department of Medical and Surgical Sciences of Mothers, Children and Adults, University of Modena, Italy. ²Pediatric Endocrinology, Regina Margherita Children's Hospital, Turin, Italy. ³Units of Pediatrics, Department of Medical and Surgical Sciences, St. Orsola-Malpighi Hospital, University of Bologna, Italy. 4Division of Paediatrics, Department of Mother and Child-AUSL of Reggio Emilia-IRCCS, Reggio Emilia, Italy. 5Anna Meyer Children's University Hospital, Florence, Italy. 6Pediatric Unit, ASST Sette Laghi, Varese, Italy. 7Department of Human Pathology in Adulthood and Childhood, University of Messina, Messina, Italy.

INTRODUCTION

The phenotypic spectrum of short stature homeobox-containing gene deficiency disorders (SHOX-D) ranges from non-specific short stature to Leri-Weill dyschondrosteosis. Current guidelines support recombinant human Growth Hormone (rhGH) in SHOX-D children^{1,2}, but long-term data are still lacking³. Moreover, no correlation has been established yet between the severity of phenotype, including the response to rhGH, and the underlying SHOX pathogenic variant⁴.

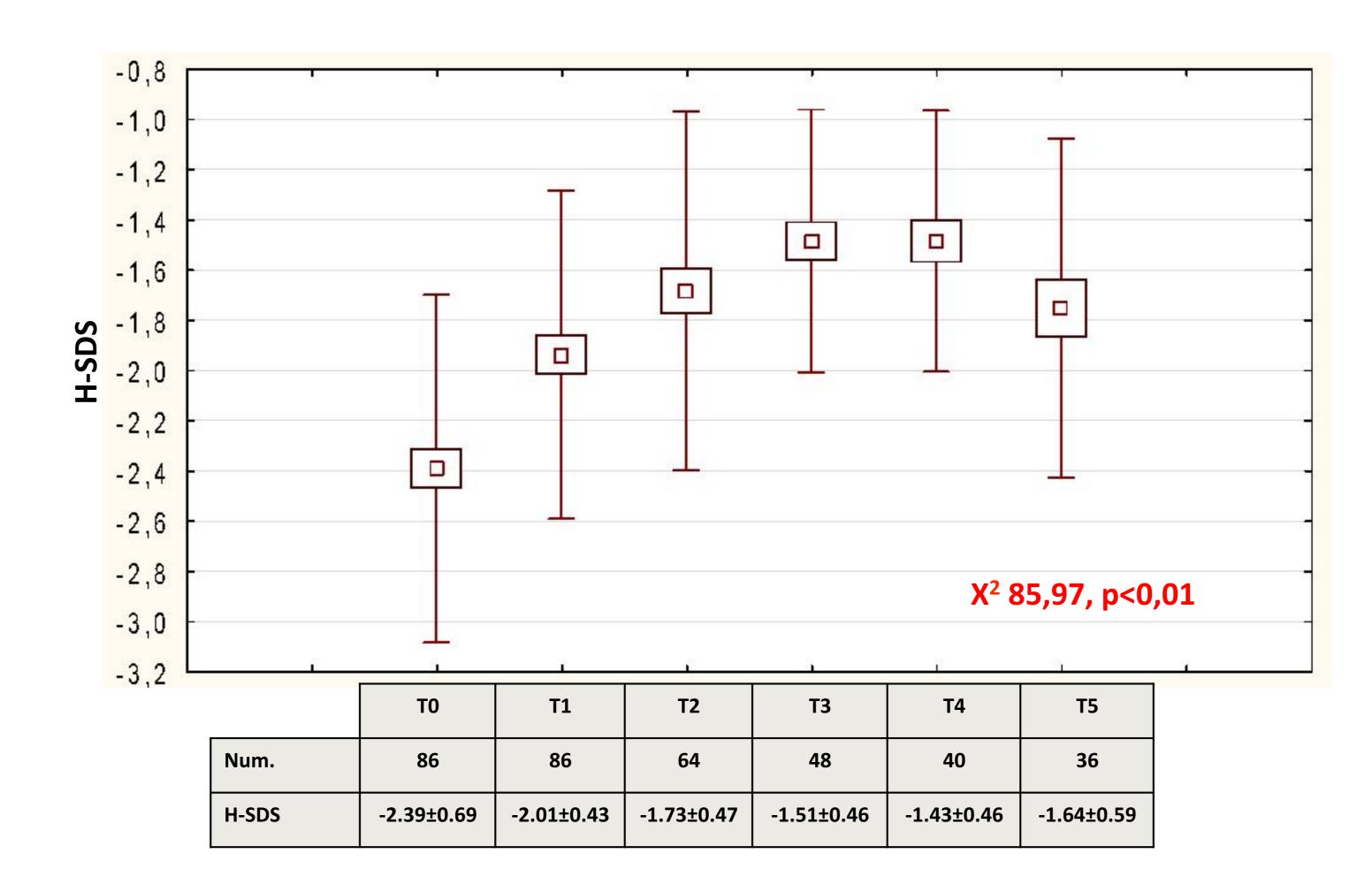
AIMS


- To evaluate long-term efficacy and safety of rhGH
- To identify potential predictive factors influencing response to rhGH

RESULTS

(a) Baseline (T0) features in enrolled patients (n.86):

Parameter	Mean value ± SDS
Female/Caucasian (%)	52/94
Prepubertal stage (%)	79
Age (years)	8.64±3.13
Bone age (years)	7.83±3.05
H-SDS	- 2,39±0,69
TH-SDS/ Parental disproportions (%)	-1.30±0.98 / 48
BMI-SDS	-0.05±1.00
AS-H ratio	0.97±0.08
S-H ratio	0.56±0.02
GV-SDS	-1.27±1.84
Rappold score	7.41±4.83
rhGH initial dose (mg/kg/week)	0,25±0,04


(c) Correlations between mean H-SDS gain at T5 and **GV-SDS** in the first two years of treatment:

GV-SDS after two years of rhGH

 R^2 0.47, p < 0.05

(b) Longitudinal data (mean rhGH duration 5.94±2.16 years):

GV SDS (T0 -1.27±1.84, T1 2.39±1.37, T2 1.44±1.91, T3 0.95±1.87, T4 0.77±2.41, X2 56.65, p < 0.01) and S/H ratio (T0 0.56±0.02, T1 0.55±0.02, T2 0.54±0.01, T3 0.54±0.01, T4 0.53±0.01, T5 0.54±0.01, X2 15.77, p < 0.01) improved significantly along rhGH. Mean H-SDS gain was: T4 vs. T0 +1.18±0.49 and T5 vs. T0 +0.68±0.89

- (d) No adverse effects were reported a part from transient impaired glucose metabolism (2/86 cases) and transient headache (1 case).
- (e) No differences in clinical and therapeutic data were detected between patients carrying mutations involving enhancers (51/86) and ones with no-sense and missense mutations in SHOX gene, both at the beginning of rhGH and along follow-up.

METHODS

We collected	
What?	 Anamnestic (age, gender, ethnicity) and genetic data (genotype) Family data (parental height, sitting height and arm span) Anthropometric data [height SDS (H-SDS), BMI-SDS, arm span/height ratio (AS/H), sitting height/height ratio (S/H), pubertal stage, growth velocity (GV)-SDS, target height (TH)]. Clinical data (Rappold score, bowing of tibia, high-arched palate, muscular hypertrophy) Biochemical data (IGF-1, TSH, FT4, glucose metabolism) Instrumental data (bone age, bone abnormalities) Therapeutic data (rhGH dose, side effects)
Who?	Children and adolescents with a genetic confirmation of SHOX-D treated on rhGH. Exclusion criteria: chronic disease, other already defined genetic or endocrine disease, treatment with drugs that affect growth, malnutrition and psychosocial disorders.
When?	Data were collected at the beginning of rhGH (T0), yearly during the first 4 years of rhGH (T1, T2, T3, T4) and at final height (T5), when available.

CONCLUSIONS

Our preliminary data confirm the efficacy and safety of rhGH in SHOX-D children. Besides wide phenotypic spectrum, all SHOX-D genotypes seem to adequately respond to rhGH

REFERENCES

¹lughetti L, et al. Impaired GH secretion in patients with SHOX deficiency and efficacy of recombinant human GH therapy. Horm Res Paediatr. 2012;78(5-6):279-87. ²AIFA note 39 n. 617/2014 (Determina n. 458/2020). Blum WF, et al. Height gains in response to growth hormone treatment to final height are similar in patients with SHOX deficiency and Turner syndrome. Horm Res. 2009;71(3):167-72.4Shapiro S, et al. SHOX gene variants: growth hormone/insulinlike growth factor-1 status and response to growth hormone treatment. Horm Res Paediatr. 2015;83(1):26-35.

Contact information: bruzzi.patrizia@aou.mo.it