NATURAL ANTIBIOTICS:

NEW BIOMARKERS OF CHILDHOOD OBESITY

Anna Prats-Puig^{1,2}, Montserrat Gispert-Saüch², Gemma Carreras-Badosa^{1,2}, Ferran Díaz Roldán^{1,2}, Francis de Zegher³, Lourdes Ibánez⁴, Judit Bassols^{1,2}, Abel López-Bermejo^{1,2}.

¹Girona Institute for Biomedical Research, Girona, Spain, ²Pediatrics, Dr. Josep Trueta Hospital, Girona, Spain, ³Department of Woman & Child, University of Leuven, Leuven, Belgium. ⁴Pediatric Endocrinology Sant Joan de Déu Children's Hospital, Barcelona and CIBERDEM, Barcelona, Spain.

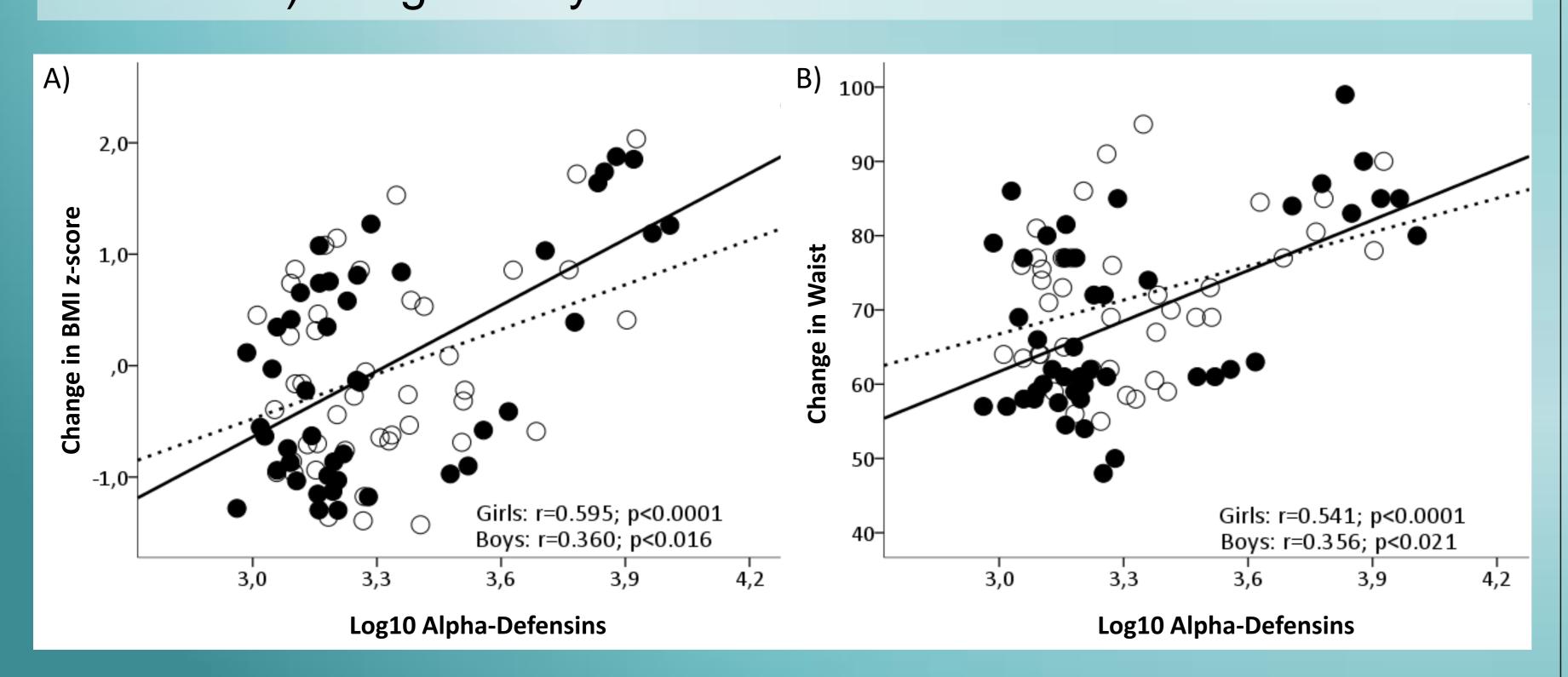
BACKGROUND

The innate immune system is one of the first lines of host defense against invading pathogens. Pro-inflammatory α -defensins (mainly DEFA1-3) and anti-inflammatory bacterial/permeability-increasing protein (BPI) are antimicrobial peptides predominantly produced by neutrophils which have been recently related to obesity, type 2 diabetes and cardiovascular risk.

OBJECTIVE AND HYPOTHESES

The aim of our study was to test whether α -defensins and BPI could be new markers of obesity and cardiovascular risk in children.

METHODS


We performed a cross-sectional and longitudinal study in asymptomatic prepubertal Caucasian children.

Plasma α -defensins and BPI (ELISA), body mass index (BMI), waist circumference, systolic blood pressure (SBP), carotid intima media thickness (cIMT), HOMA-IR and HMW-adiponectin were cross-sectionally assessed in 250 children at age 7 years (50% girls, 21% overweight subjects). α -defensins and BPI were also longitudinally assessed in a subset of these children (n=89) at age ~10 years (49% girls, 0% overweight subjects).

RESULTS

In the cross-sectional study, higher α -defensins concentrations were associated with a poorer cardiometabolic profile, showing positive associations with BMI, waist, SBP, cIMT, HOMA-IR and negative correlations with HMW adiponectin (all between r=0.191 and r=0.377; p<0.01 and p<0.0001). Conversely, higher plasma BPI concentrations were associated with a better cardiometabolic phenotype showing negative associations with BMI, waist, SBP, cIMT, HOMA-IR and positive correlations with HMW adiponectin (all between r= -0.124 and r= -0.329; p<0.05 and p<0.0001).

In the longitudinal study, plasma concentrations of α -defensins, but not of BPI, at age 7 were associated with BMI (β =0.189, p=0.002; model R²=0.847) and waist (β =0.241, p=0.001; model R²=0.754) at age ~10 years.

Figure 1: Correlation graphs of α -defensins at ~7 years with A) change in BMI z-score and B) change in waist, at follow-up in the children included in the longitudinal study. Open dots and dashed lines depict boys whereas filled dots and lines depict girls. r and p-values are shown from Pearson analyses.

Table 1. Clinical and metabolic variables in the study subjects.

	Cross-sectional study	Longitudinal study
Clinical assessments		
N	250	89
Age (y)	7.7 (7.5; 7.9)	10.8 (10.5; 11.0)
Female (%)	49.6	49.4
Puberty (%)	0	47.2
Weight (Kg)	33.3 (31.8; 34.8)	42.1 (39.7; 44.4)
Height (cm)	128 (127; 129)	144 (141; 147)
BMI (Kg/m ²)	19.3 (18.8; 19.8)	19.4 (18.7; 20.1)
BMI z-score	0.6 (0.4; 0.8)	0.5 (-0.1; 0.3)
Waist (cm)	62.8 (61.4; 64.2)	70.4 (68.5; 72.4)
Body fat (%)	33.1 (32.2; 34.0)	32.7 (31.4; 34.1)
SBP (mmHg)	104 (103; 106)	104 (102; 106)
DBP (mmHg)	56 (55; 57)	56 (55; 59)
Carotid IMT (cm)	0.042 (0.040; 0.043)	0.047 (0.046; 0.048)
Metabolic variables		
Glucose (mg/dL)	86 (85; 87)	88 (86; 89)
HDL Cholesterol (mg/dL)	54 (52; 55)	56 (54; 58)
Triacylglycerol (mg/dL)	62 (59; 66)	59 (54; 63)
Insulin (mIU/L)	4.3 (3.8; 4.8)	4.4 (3.6; 5.2)
HOMA-IR	0.94 (0.83; 1.06)	0.97 (0.79; 1.15)
HMW adiponectin (mg/L)	7.3 (6.7; 7.7)	16.6 (12.6; 20.6)
hs-CRP (mg/L)	1.5 (1.3; 1.7)	1.1 (0.8; 1.4)
α-defensins (ng/ml)	2.8 (2.5; 3.2)	
BPI (ng/ml)	12.3 (9.7; 14.8)	

CONCLUSION

We suggest that the natural antibiotics α -defensins and BPI may be new markers of childhood obesity. Increased concentrations of α -defensins may predict weight gain and abdominal fat deposition in prepubertal children.