

Clinical phenotype and molecular studies in patients with hypophosphatemic rickets

Monika Obara-Moszynska¹ Aleksandra Rojek^{1,2} Zofia Kolesinska¹ Małgorzata Slomko-Jozwiak¹ Marek Niedziela^{1,2}

1. Department of Pediatric Endocrinology and Rheumatology 2. Molecular Endocrinology Laboratory

Poznan University of Medical Sciences Poland

DISCLOSURE STATEMENT: The authors have nothing to disclose.

BACKGROUND

Hypophosphatemic rickets (HR) is a group of rare disorders caused by excessive renal phosphate wasting. The dominant form of HR is X-linked HR (XLHR) caused by mutation in the phosphate-regulating endopeptidase gene PHEX. There is also autosomal dominant form of HR caused by mutation in FGF23 gene or rare autosomal recessive form caused by DMP1 mutation. The phenotype can vary from very delicate to severe bone disease.

The aim of the study was to investigate the clinical and molecular background of HR in 5 patients.

Patients and Methods: 5 patients aged 2-8 years (2 girls and 3 boys) diagnosed with HR due to clinical and biochemical picture. In each of these patients three exons of the FGF23 gene were directly sequenced after polymerase chain reaction amplification of the entire coding region. Additionally, in one patient PHEX gene was also analyzed by direct sequencing (in the four remaining the analyses are ongoing).

RESULTS

- 1. Bowing of legs was the dominant symptom in all patients.
- 2. All patients presented hypophosphatemia, increased alkaline phosphatase concentration with normal levels of serum calcium and 250HD3. In all children with the time the increased loss of phosphorus with urine and decrease of tubular reabsorption of phosphate (TRP) was observed.

3. In one patient analysis of the FGF23 gene revealed the presence of one polymorphism c.C716>T, p.T239M. The remaining four patients were FGF23 mutation-negative. In one patient the already known PHEX gene deletion was found encompassing exons 17-22.

Fig 1. The characteristic bowing of legs of one of the patients.

Table 1. Chosen parametres in the studied group.

	Age at			Dental/				-		S-						
Patient's diagnos				peridental		S-		S-		25(OH	U-	U-	TRP	TRP		
number		Sex	Long bone deformities	problems	Other clinical problems	Ca	S-P	<u>ALP</u>	PTH)D3	Ca	Ρ	1	2	PHEX	FGF23
	yrs/mor	n				mg/	mg/		pg/		mg/	mg/				
	ths	M/F				dl	dl	U/L	ml	ng/ml	kg/d	kg/d	%	%	Pos/Neg	Pos/Neg
												23.2				polymorphism c.C>716T
1	2 3/12	2 F	bowing of lower limbs, short stature	no	no	9.76	3.13	522	21	39.6	0.4	8	84	69	not tested	p.T239M in exon 3
			bowing of lower limbs, short stature, lumbar													
2	7	F	hyperlordosis.	no	no	10.2	2.89	407	11.5	22.8	3.6	21.3	96	71	not tested	negative
			bowing of lower limbs, short stature, frontal			10.3									deletion of	
3	2 3/12	м	bossing, widening of distal parts of forearms	yes	no	6	2.46	730	30.7	26.4	0.2	42.1	84	68	exons 17-22	negative
					immunodeficiency,	10.4						21.3				
4	2 8/12	м	bowing of lower limbs, short stature.	yes	(hypogammaglobulinemia)	8	2.57	723	36.6	37.6	0.85	5	91	72	not tested	negative
			bowing of lower limbs, short stature, widening		immunodeficiency	10.2		107								
5	1 1/12	Μ	of distal parts of forearms	no	suspected	8	2.52	9	64.2	79.1	1.4	26.7	78	71	not tested	negative

CONCLUSIONS

1. The early diagnosis of HR is very important for proper treatment and to prevent bone deformities.

2. The molecular analysis of *FGF23* and *PHEX* gene is very important for the confirmation of clinical diagnosis of hypophosphatemic rickets and highlights the role of further genetic counselling in families with HR patients.