

Clinical case of family neonatal diabetes hrp0082P3-D2-714 with KCNJ11 gene mutation

Chumak S.O.¹, Budreiko O.A.¹, Globa E.V.², Hattersley A.T.³, Ellard S.³

^{1.}State Institution "Institute of Children and Adolescents Health Care" of NAMS of Ukraine ² Ukrainian Center of Endocrine Surgery, Endocrine Organs and Tissue Transplantation, MoH of Ukraine ³ University of Exeter Medical School, UK.

Background: Neonatal diabetes is a rare pathology occurring in around 1 in every 200,000-400,000 live births. The most common cause of permanent neonatal diabetes (PNDM) is heterozygous activating mutations in the *KCNJ11* gene encoding the pore-forming Kir6.2 subunit of the pancreatic beta cell KATP channel.

CLINICAL CASE

Method: We studied a family (mother and child) with PNDM diagnosed within the first 6 months of life. Carbohydrate metabolism was studied by iPro- 2 monitoring, HbA1c, C-peptide and insulin levels during 8 months of SU therapy. The *KCNJ11* gene was sequenced by Sanger.

Objective and hypotheses: To determine the dynamic of carbohydrate metabolism in family transferred from insulin to sulphonylureas (SU).

Dynamics of carbohydrate metabolism child A, 8 months. 6 months follow-up in patients receiving 1.5 mg / day of <u>glibenclamide</u>

Date, time	НвАс1	insulin	C-peptid	Glycaemic	TSH
-					

03.09.13	13,8	0,5	0,09	13,8 [2,6-28,6]	4,1	2,5
03.03.14	5,15	3,74	1,52	6,0 [3,3-10,2]	3,2	
reference	5-7 %	2,6-27,5	0,5-2,5	3,3-5,5	0,5-3,5	<30
values		<u>mkME</u> /ml	ng/ml	mmol/l	mME/L	mg/l

Dynamics targets the child's mother N., 28 years in patients receiving 15 mg / day of glibenclamide

Date, time	НвАс1	Insulin	C-peptid	Glycaemic	тѕн	MAU
03.09.13	8,9	0,05	0,009	11,6 [2,8-18]	2,5	12,5
03.03.14	6,5	8,9	2,35	7,8 [5,4-14,5]	2,15	5,6
reference values	5-7 %	2,6-27,5	0,5-2,5	3,3-5,5	0,5-3,5	<30
		<u>mkME</u> /ml	ng/ml	mmol/l	mME/L	mg/l

Comparison of daily glycaemia levels during 7 days for patient, received treatment.

Date of Report: 15/08/2013

GENETIC TESTING FOR NEONATAL DIABETES

Reason for Request

Alisa was diagnosed with diabetes at birth. There is a family history of diabetes affecting her mother who was diagnosed with diabetes at the age of 3 months. Mutation analysis of the KCNJ11, ABCC8 and INS genes has been undertaken.

Test methodology

- Analysis of coding and flanking intronic regions of the KCNJ11 gene (NM_000525.3) by Sanger sequencing.
- Analysis of all coding regions and exon/intron boundaries of the INS gene (NM_000207.2) by Sanger sequencing.
- Analysis of all coding regions and exon/intron boundaries of the ABCC8 gene (U63421 and L78208) by Sanger sequencing.

Result:	Heterozygous mutation identified			
	Gene : KCNJ11			
	Location : Exon 1			
Mutation details:	DNA Description : c.602G>A			
	Protein Description : p.Arg201His (p.R201H)			
	Consequence : Missense			

Interpretation

Alisa is heterozygous for a *KCNJ11* missense mutation, p.R201H. This mutation is predicted to be pathogenic and the result confirms a diagnosis of neonatal diabetes due to a mutation in the Kir6.2 subunit of the K-ATP channel (Gloyn *et al* 2004 N Engl J Med <u>350</u>, 1838-1849). Transfer to sulphonylurea therapy has been successful for all patients with this mutation and results in improved glycaemic control (Pearson *et al* 2006 N Engl J Med <u>355</u>, 467-477). Each of this patient's offspring will be at 50% risk of inheriting this mutation and developing neonatal diabetes.

This report depends upon, (I) - correct identification of all the samples, (II) - all biological relationships being correctly presented, (III) - accurate diagnosis of the affected individual(s). Please note that this testing was undertaken as part of a research study.

Andrew Parrish Genetic Technologist

Х: используйте клиническую оценку

S: без данных сенсора

С: без калибровки ГК

Results: A mutation in *KCNJ11*, R201H was identified in both patients. Transfer from insulin to SU tablets was done in child and mother at the age of 2 months and 28 y.o. accordingly. At the start of transfer process in child the daily dose of SU was divided into 6 doses (0,27 mg/kg/day), every feeding, but after 8 months of SU treatment frequency of dosing is reduced to 4 doses with decreasing of SU daily dose (0,17 mg/kg/day). The child's mother at 28 y.o. stopped insulin (45 units/day) and went on to SU in dose 15 mg/day. After 8 months of SU treatment HbA1c improved in both patients (in child 5.15% vs 13.9%, in mother 6,5% vs 8,9%, accordingly). Daily monitoring (iPro- 2) in child showed a marked reduction in the fluctuations as well as an overall lower level of glycaemic control (13,8 [2,6-26,6] mmol/l before SU treatment to 6,0 [3,3-10,2] mmol/l – after). C-peptide level increased from 0,09 ng/ml to 0,5 ng/ml in child, and from 0,009 ng/ml to 0,35 ng/ml in mother after 8 months of SU treatment accordingly.

MAU

Conclusion: Patients with diabetes, manifestated within the first 6 months of life have to perform genetic testing for determination of the pathogenetic treatment. Daily dose of SU given for child during 8 months decreased by 37% on a background of improving of carbohydrate metabolism, HbA1c. A good response on SU treatment was observed even after 28 years of insulin therapy