A novel mutation causing Pseudohypoaldosteronsim

Dr Emmeline Heffernan¹ Dr Noina Abid¹ Dr Shane McKee²

¹Dept Endocrinology, Royal Belfast Hospital for Sick Children ²Dept Clinical Genetics, Belfast City Hospital

Introduction

- We present a case of a neonate with a rare cause of life threatening hyperkalaemia, hyponatraemia and metabolic acidosis.
- We discuss the important investigations and differential diagnoses in an infant with these electrolyte abnormalities.
- A novel mutation in SCNN1A was found, this is the first case in Northern Ireland

Case History

8 day old girl presented to Emergency dept with 12 hour history of poor feeding and vomiting

Past medical history:

- Term, NVD, birth weight 3.5kg
- First born child, parents consanguineous
- Breastfed, previously well

Examination

- Mottled, cool peripheries, drowsy & floppy
- HR 66, RR 30, SpO₂ 88% r/a, CRT 4 seconds, Temp 34.9°C, 5% dehydrated
- HS: 1 & 11 & 0, Femorals not palpable
- RS: good AE R=L
- Abdomen: soft, non tender, no organomegaly or masses, normal female genitalia

Initial management

- O₂, bag & mask ventilation → HR>100
- 3 x 10mls/kg Saline boluses
- Cardiac monitoring periods of VT
- IV Cefotaxime & Amoxicillin
- IV Hydrocortisone given empirically
- Venous gas: Ph 7.16, CO₂ 8.6, O₂ 3.6, HCO₃
 23.1, BE 5.5,
- Na 121 mmol/L, K 10.5 mmol/L
- Blood sugar 3.8mmol/L
- Urgent echo, renal US: normal

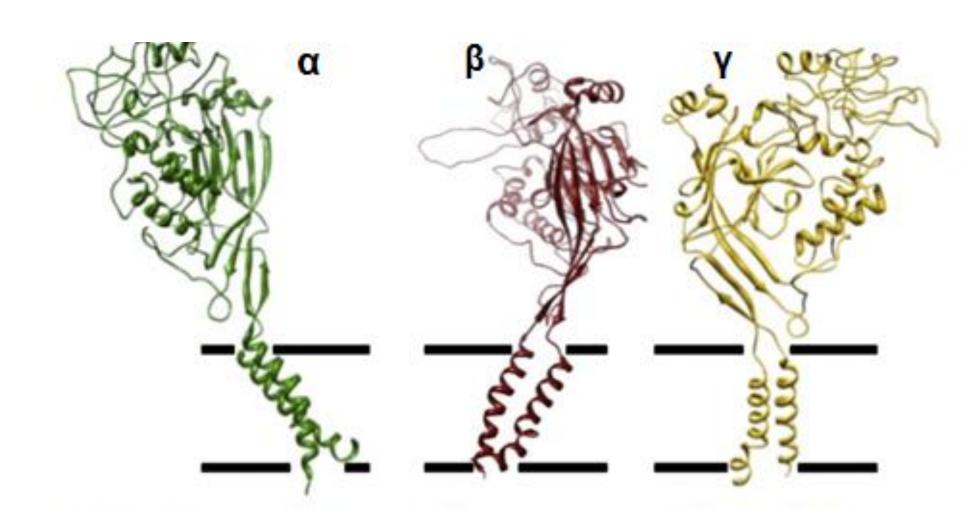
Management of hyperkalaemia

- Nebulised Salbutamol continuously
- Cardiac monitoring in PICU
- IV Calcium gluconate 10% 0.2mls/kg
- Insulin infusion 0.05 units/kg/hr
- IV fluids 10% dextrose with NaCl @ 2/3 maintenance
- Sodium bicarbonate IVI 1mmol/kg/hr
- Calcium resonium 1.5g NG stat

Differential Diagnosis

- Congenital adrenal hyperplasia (21 OH deficiency, 3^β HSD deficiency)
- Aldosterone synthase deficiency
- Adrenal hypoplasia congenita
- Antenatal Bartter's syndrome (loss ROMK)
- Pseudohypoaldosteronism Type 1 (Renal or Multiple Target Organ Disease)
- Secondary pseudohypoaldosteronism (UTI, urinary obstruction)

Investigations	Results
U&E, CRP	Na 116, K >10, Ur 13, Cr 53, CRP 5
FBC	Hb 20.7 WBC 15.3 Plt 369
Cortisol	793nmol/L
Insulin	16.7mU/L
ACTH	10ng/L
17 OHP	4.7nmol/L
Urine electrolytes	Na 165, K 8
Trans-tubular K gradient	$0.6 \downarrow \downarrow \downarrow \downarrow$
Fractional excretion Na	3.9%↑
Urine steroid profile	Not CAH, aldosterone synthase def
Aldosterone	45, 200 pmol/L ↑↑↑
Renin	>34 ng/ml/h 个


Pseudohypoaldosteronism

- Rare syndrome of resistance to Aldosterone
- 2 clinically distinct forms
- Systemic form: mutation ENaC, a highly Na selective channel, expressed in the distal nephron, colon, lung and exocrine glands
- Renal form: mutation mineralocorticoid receptor, mild salt losing, improves by early childhood³
- Sweat test useful to differentiate 2 forms

Generalised PHA 1 Renal PHA 1 SCNN1A, SCNN1B, SCNN1G NR3CG Genes Mineralocorticoid receptor Encoding ENaC (kidney, respiratory tract, colon, salivary glands, sweat ducts) AR, sporadic AD, sporadic Inheritance Severe hyponatraemia & hyperkalaemia Mild renal salt wasting Clinical Risk of shock, cardiac dysrhythmias, characteristics Vomiting collapse and cardiac arrest Dehydration Recurrent cough/wheeze Failure to thrive Seborrhea like skin rashes (lips/nose) Cholelithiasis ↓ Na, ↑ K, metabolic acidosis ↓ Na, ↑ K, metabolic acidosis ↑↑ Aldosterone, Renin ↑↑ Aldosterone, Renin Na 3-20 mmols/kg/day Na up to 50mmols/kg/day Treatment Low K diet Usually stop tx by 18-24 months +/- ion exchange resins Lifelong, may improve with age Improves with age-up Prognosis regulation of MC axis – high Recurrent life threatening episodes of Aldosterone levels persist salt loss Growth/puberty de lay if non complaint

Genetic Results

- Sequencing of the SCNN1A gene revealed a homozygous mutation c.1291T>G
- This results in the replacement of a cysteine residue with a glycine at position 413 of the amino acid chain.
- This cysteine is highly evolutionarily conserved, and the mutation is predicted to disrupt the structure of the extracellular domain of the protein, abrogating its function.
- Expected recurrence risk 25%

Model of ENaC subunits: α subunit is encoded by SCNN1A, required for channel activity; large extracellular loop, ENaC is a constitutively open channel –rate limiting step in Na reabsorption¹

Epithelial sodium channel, ENaC

- Constitutively open channel
- Number of active channels at the apical cell surface of distal nephron have a profound affect on Na absorption, amount Na excreted in urine

Also expressed in

- Lung: maintains composition of air-surface liquid
- Exocrine glands: sets ionic composition of sweat
- Colon: mediates Na absorption from intestine

Aldosterone induces expression of ENaC at luminal cell surface in distal tubule, allowing Na to be actively exchanged with K1

Clinical progress

Our case is now 17 months old and well, with no further acute episodes of salt wasting to date.

Na, K normal on medication:

- Sodium Chloride 12.3 mmols/kg/day
- Sodium bicarbonate 3.3 mmols/kg/day
- Low K diet: 0.6mmols/kg/day

Growth: weight 91st % height 25th %

- 2 LRTIs, 1 hospital admission
- Café au lait macules
- Aldosterone 18,000pmol/L, Renin 148.5pg/ml

References

119 (2010) 84-88

1. Schild L**The epithelial sodium channel and the control of sodium balance.** Biochimica et Biophysica Acta Volume 1802, Issue 12, 2010, 1159 –1165

2. Zennaro M, Hubert E, Fernandes-Rosa F. **Aldosterone resistance: Structural and functional consideration and new perspectives**. Molecular and Cellular Endocrinology 350 (2012) 206-215

3. Sartorato P, Khalidi Y, Lapeyraque A, Armanini D, Kuhnle U, Salomon R, Caprio M, Viengchareun S, Lombes M, Zennaro M. Inactivating mutations of the mineralocorticoid receptor in Type 1 pseudohypoaldosteronism Molecular and Cellular Endocrinology 217 (2004) 119-125 4. Amin N, Alvi N, Barth J, Field H, Finlay E, Tyerman K, Frazer S, Savill G, Wright N, Makaya T, Mushtaq T Pseudohypoaldosteronism type 1: clinical features and management in infancy. Endocrinology, Diabetes and Metabolism 2013 5. Riepe F Clinical and Molecular Features of Type 1 Pseudohypoaldosteronism

6. Wang J, Yu T, Yin L, Li J, Yu L, Shen Y, Yu Y, Shen Y, Fu Q Novel mutations in the SCNN1A gene causing Pseudohypoaldosteronism Type 1. PLOS ONE, 2013 8; 6

7. Hanukoglu A, Edelheit O, Shriki Y, Gizewska M, Dascal N, Hanukoglu I Renin-aldosterone response, urinary Na/K ratio and growth in pseudohypoaldosteronism patients with mutations in epithelial sodium channel (ENaC) subunit genes. Journal of Steroid Biochemistry & Molecular Biology 111 (2008) 268-274

8. Edelheit O, Hanukoglu I, Shriki Y, Tfilin M, Dascali N, Gillis D, Hangukoglu A Truncated beta epithelial sodium channel (ENaC) subunits responsible for multi-system Pseudohypoaldosteronism support partial activity of ENaC. Journal of Steroid Biochemistry & Molecular Biology