

The role of SHOX gene in Idiopathic Short Stature: an Italian multicenter study

R. Minari*¹, A. Vottero¹, S. Azzolini², D. Barbaro³, G. Bindi⁴, M. Bozzola⁵, C. Burrai⁶, G. M. Cardinale⁷, D. Cioffi⁸, M. Cisternino⁹, M. S. Coccioli¹⁰, M. Delvecchio¹¹, E. Fabbrizi¹², M. Ferrari¹³, F. Gallarotti¹⁴, F. Gallo¹⁵, L. Ghizzoni¹⁶, M. C. Maggio¹⁷, B. Mainetti¹⁸, R. Montinaro¹⁹, G. Municchi²⁰, A. Panariello²¹, M. Parpagnoli²², L. Perrone²³, M. Petraroli²⁴, G. Radetti²⁵, A. F. Radicioni²⁶, A. Rossodivita²⁷, M. C. Salerno²⁸, S. Savasta⁹, S. Seminara²², L. Tafi²⁹, M. Tomat³⁰, A. Tummolo³¹, M. Wasniewska³², L. lughetti³³ and S. Bernasconi¹.

¹University of Parma, Department of Clinical and Experimental Medicine, Parma, Italy; ²University Hospital of Padua, Pediatric Endocrinology and Adolescence Unit at Pediatric Department, Padua, Italy; ³ASL 6, Section of Endocrinology, Livorno, Italy; ⁴ Pistoia Hospital, Unit of Pediatrics, Pistoia, Italy; ⁶San Matteo Hospital, Unit of Auxology, Pavia, Italy; ⁶University Hospital of Sassari, Endocrinology Unit, Sassari, Italy; ⁷Ferrari Hospital, Unit of Pediatrics, Casarano (LE), Italy; ⁸Santobono Pausilipon Hospital, Auxology and Endocrinology Units, Naples, Italy; ⁹San Matteo Hospital, Unit of Pediatrics, Francavilla Fontana (BR), Italy; ¹¹IRCCS Casa Sollievo della Sofferenza, Pediatrics Unit, San Giovanni Rotondo (FG), Italy; ¹²Civili Hospital, Unit of Pediatrics, Brindisi, Italy; ¹⁶University of Turin, Department of Pediatrics, Massa-Carrara, Italy; ¹⁴"S. Croce e Carle" Hospital, Department of Pediatrics, Cuneo, Italy; ¹⁵Perrino Hospital, Unit of Pediatrics, Brindisi, Italy; ¹⁶University of Turin, Department of Internal Medicine, Division of Endocrinology and Metabolism, Turin, Italy; ¹⁷"G.Di Cristina" Hospital, Unit of Pediatrics, Palermo, Italy; ¹⁸AUSL, Unit of Pediatrics, Forli, Italy; ¹⁹"S. Caterina Novella" Hospital, Unit of Pediatrics, Galatina (LE), Italy; ²⁰University of Siena, Pediatric Department, Siena, Italy; ²¹San Salvatore Hospital, Department of Pediatrics, Pesaro, Italy; ²²Meyer Children Hospital, Department of Pediatrics, Florence, Italy; ²⁵Second University of Naples, Pediatric, Solzano, Italy; ²⁶Austa Austan Nuova Hospital, Unit of Pediatrics, Rome, Italy; ²⁶Iniversity of Naples, "Federico II", Department of Pediatrics, Solzano, Italy; ²⁶Austa Asine Nuova Hospital, Outi of Pediatrics, Rome, Italy; ²⁶University of Naples, "Federico II", Department of Pediatrics, Naples, Italy; ²⁹AUSL 8, Department of Pediatrics, Arezzo, Italy; ³⁰University Hospital of Udine, Unit of Pediatrics, Rome, Italy; ³²University of Maples "Federico II", De

BACKGROUND

 The short stature homeobox-containing (SHOX) gene, located in the telomeric pseudoautosomal region 1 (PAR1) on the short arm of both sex chromosomes, is important for linear growth.

•<u>AIM</u>: to evaluate the presence of SHOX gene deletions/point mutations in children with short stature in order to understand the role of SHOX gene in Idiopathic Short Stature (ISS) and estimate its frequency.

MATERIALS AND METHODS

This study, supported by the Eli Lilly Italia and approved by the Italian Society for Pediatric Endocrinology and Diabetes (ISPED), is a multicenter study involving several Italian Pediatric Endocrinology Units. Out of a total number of 152 blood samples received, 68 were from patients with ISS.

Genomic DNA was extracted and used for Multiplex Ligation-dependent Probe Amplification (MLPA) and sequencing analysis. MLPA was performed in the Pediatric Laboratory of Parma, using the SALSA MLPA P018-F1 SHOX probemix kit, analyzing both the coding region and the enhancer of the SHOX gene. Deletions and duplications were confirmed with Copy Number Assay (Applied Biosystems) in Real Time PCR.

Table 2. Phenotype and genotype characteristics of patients with mutations

Case	Gender	Age, years	Genotype	Phenotype	Height (SI
1	F	10,4	Complex caryotype	Short stature	-2,42
2	M	13	SHOX deletion	Short stature, mesomelia	-1.24
3	F	8,2	SHOX deletion	Short stature, mesomelia	-2,35
4	F	11,6	LOH CRLF2 gene	Short stature, minor skeletal alteration	-2,4
5	F	7,5	LOH CRLF2 gene	Short stature, minor skeletal alteration	-1,76
6	F	8	SHOX deletion	Short stature	-3,19
7	M	11,9	Gain CRLF2	Short stature	-1,7
8	M	7,7	Gain SHOX	Short stature, minor skeletal alteration	-2,16
9	M	12,6	46, X, der(Y)	Short stature, minor skeletal alteration	-1,98
10	M	12,8	Gain CRLF2	Short stature, Madelung deformity	-3,14
11	F	6,4	46,X i (Xq10)	Short stature	-3,84
12	M	11,3	SHOX deletion	Short stature, Madelung deformity	-1,17
13	F	0,3	SHOX deletion	Short stature	-2,08
14	M	7,3	Gain CRLF2	Short stature	-2,66
15	F	2,9	Mutation	Short stature	-1,3
16	M	8,8	Gain CRLF2	Short stature, minor skeletal alteration	-1,94
17	F	15	Gain CRLF2	Short stature	-1,65
18	F	7	LOH CNE8 and 9	Short stature, minor skeletal alteration	-2,98
19	M	10,5	LOH CNE9	Short stature, Madelung deformity	-1,3
20	M	9,9	SHOX deletion	Short stature, Madelung deformity	-2,52
21	F	12	SHOX deletion	Short stature, Madelung deformity	0,72
22	F	5,9	LOH SHOX area	Short stature	-2,92
23	F	4,1	SHOX deletion	Short stature, Madelung deformity	-2,05
24	F	11,9	Mutation	Short stature, minor skeletal alteration	-2,13
25	M	10,2	SHOX deletion	Short stature	-1,49
26	F	9,5	LOH CNE8 and 9	Short stature, minor skeletal alteration	-2,22
27	F	7,9	SHOX deletion	Short stature	-3,21
28	M	14,9	Mutation	Short stature	-1,04
29	M	6,2	Dup CNE8 and 9	Short stature, minor skeletal alteration	-2,22
30	M	3,4	SHOX deletion	Short stature	-1,97
31	F	2,3	Mutation	Short stature	-2,37
32	F	12,6	Mutation	Short stature, Madelung deformity	-1,4

Figure 2. Genotype/phenotype correlation and frequency

CONCLUSIONS

If we exclude the patients with Leri-Weill syndrome who presented a SHOX gene deletion in 50%, in our cohort of patients with

