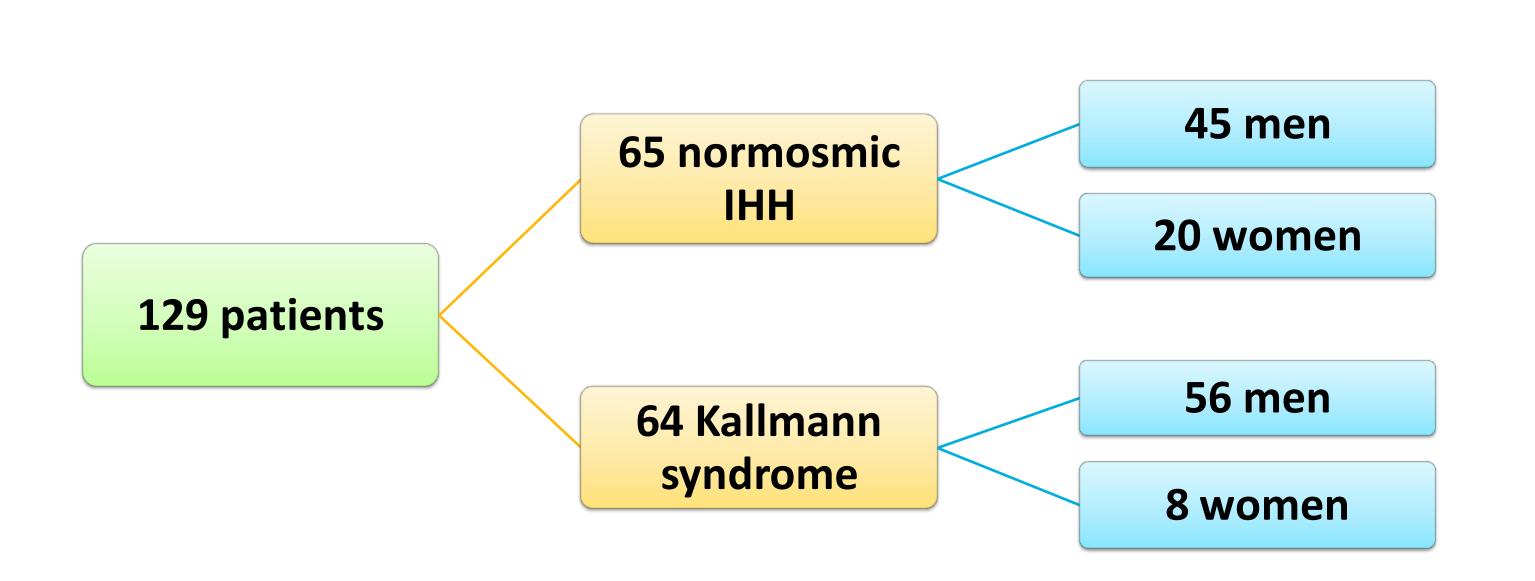


Analysis of the WDR11 gene in patients with isolated hypogonadotropic hypogonadism with and without olfactory abnormalities

Luciana R. Montenegro, Ana Claudia Latronico, Letícia F. G. Silveira

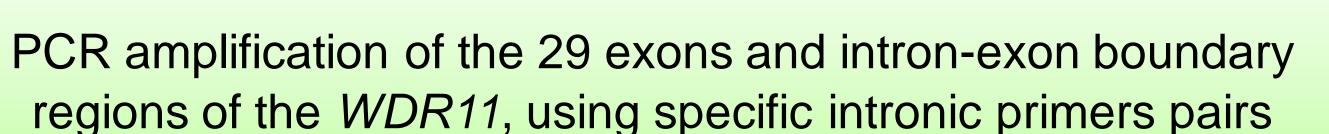
Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular (LIM/42), Disciplina de Endocrinologia e Metabologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, SP, Brazil


INTRODUCTION

- The WDR11 gene was recently involved in the pathogenesis of isolated hypogonadotropic hypogonadism (IHH).
- ❖ In 2010, Kim et al. (1) identified five different heterozygous missense WDR11 rare variants in 6 of 201 IHH patients (5 normosmic IHH and 1 Kallmann Syndrome), which were absent in more than 400 controls.
- ❖ Studies in animal models demonstrated that WDR11 interacts with EMX1, a homeodomain transcription factor involved in the development of olfactory neurons and the missense alterations reduced or abolished this interaction (1).
- ❖ However, since this first description, no other mutations in this gene were associated with the IHH phenotype (2-4).

OBJECTIVE

❖ To investigate the presence of *WDR11* rare variants in patients with isolated hypogonadotropic hypogonadism (IHH) with and without olfactory defects.


PATIENTS

- 28 patients (21.7%) had familial IHH
- All patients have been previously screened for variants in the following IHH associated genes:
 - KAL1 in Kallmann syndrome
 - GnRH1/GnRHR, KISS1/KISS1R and TAC3/TAC3R in normosmic IHH
 - FGF8/FGFR1 and PROK2/PROKR2 in both conditions.
- ❖ 32% of the patients had an identified defect in one of these genes.

METHODS

Genomic DNA extraction from peripheral leukocytes

Sanger sequencing and comparison to the reference DNA sequence available at NCBI: NM_018117.11

RESULTS

- No rare variants were identified in the patients studied.
- Only the following known polymorphisms were identified:

rs35692153	COSM147066	rs151162552
rs7899928	COSM147068	rs34567350
rs1652727	rs34567350	COSM147069
rs149486212	rs117848117	COSM1346180
rs12268298		

CONCLUSIONS

- ❖ These results suggest that WDR11 rare variants are not a common cause of IHH.
- The role of this gene in the pathogenesis needs to be further investigated.

REFERENCES

- 1. Kim HG, Ahn JW, Kurth I, et al. WDR11, a WD protein that interacts with transcription factor EMX1, is mutated in idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am J Hum Genet, 2010. 87(4): 465-79.
- 2. Laitinen EM, Vaaralahti K, Tommiska J, et al._Incidence, phenotypic features and molecular genetics of Kallmann syndrome in Finland.Orphanet J Rare Dis. 2011;6:41.
- 3. Quaynor SD, Kim HG, Cappello EM, et al. The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil Steril. 2011;96(6):1424-1430.
- 4. Izumi Y, Suzuki E, Kanzaki S, et al. Genome-wide copy number analysis and systematic mutation screening in 58 patients with hypogonadotropichypogonadism. Fertil Steril. 2014 pii: S0015-0282(14)00563-9.

