

Cognitive processing speed as a function of growth hormone treatment in short stature children: a multiple regression analysis.

John Eric Chaplin¹, Berit Kriström², Björn Jonsson³, Torsten Tuvemo³, and Kerstin Albertsson-Wikland¹ Göteborg Pediatric Growth Research Center, Department of Pediatrics, Institute of Clinical Science, The Sahlgrenska Academy at University of Gothenburg, ²Institute of Clinical Science/Pediatrics, Umeå University, Umeå, ³Department of Women and Child Health, Uppsala University, Uppsala, Sweden.

Disclosure statement: The study is based on data from an investigator-initiated and sponsored study TRN 98-0198-003 with support from Pharmacia/Pfizer 2000–2005. JC & BK have received consultation honoraria.

Aim

The aim was to observe the cognitive functioning of 99 pre-pubertal, short children during the initial 24 months of GH treatment, Table 1.

Methods & statistics

Cognitive testing was carried out using the Wechsler Scales of Intelligence at baseline, 3, 12 and 24 months.

The population included children with isolated growth hormone deficiency (IGHD) (N=41) and idiopathic short stature (ISS) (N=58).

Effect sizes were calculated. Cohen's d: low effect = 0.20-0.50; medium effect = 0.50-0.80; high effect = >0.80.

Results

A significant increase in **full-scale IQ (FSIQ)** was found for the whole group following 24 months of GH treatment (p<.05; **Cohen's d=0.27 low effect**).

The ISS subgroup increased in Perceptual Organisation (p<.001; Cohen's d=0.53 medium effect).

The IGHD subgroup increased in FSIQ (p<.001; Cohen's d=0.63 medium effect); Performance IQ (p<.001; Cohen's d=0.65 medium effect) and Processing Speed Index (PSI) (P<.005; Cohen's d=0.71 medium effect).

Multivariate regression

40% of the variance in **PSI** (IGHD population) was found to be related to **GHmax** and **IGF-ISDS** at baseline.

Conclusions

❖ Children with the lowest GH levels have the highest increase in IQ.

❖ Cognitive processing speed and performance IQ increase more than other IQ variables indicating improvements in fluid intelligence.

Patients

Table 1. Characteristics of the study population at baseline and 24 months (n=99).

	Mean±SD Median	Range
At GH baseline		
Age, years	$7.3\pm\ 2.07\ 7.1$	3.1 - 11
Height _{SDS}	-2.7 ± 0.43 -2.6	-3.61.8
diffH-MPH _{SDS}	-1.7± 0.56 -1.7	-3.00.6
IGF-I _{SDS}	-1.1± 1.08 -1.1	-3.8 - 1.5
GH _{max} AITT, mU/L	18.6±10.90 15.9	1.1 – 62.9
GH _{max} 24h, mU/L	25.5±12.09 23.7	0.8 - 58.1
At 24 months of GH		
Height _{SDS}	-1.3±0.65 -1.4	-2.8 - 0.2
Delta Height _{SDS} 24-0 months	1.3±0.48 1.3	0.2 - 2.7
diffH-MPH _{SDS}	-0.4 ± 0.53 -0.5	-2.2 – 0.9
IGF-I _{SDS}	1.5±1.14 1.6	-1.5 - 4.2
Delta IGF-I _{SDS} 24-0 months	2.6±1.22 2.6	-0.2 - 6.7

Table 2. Significant increases were found in most IQ areas.

	GHD	GHD with	in-groups		GHD	GHD within-groups	
	Mean (SD)	p-value	Effect size (95% CI)		Mean (SD)	p-value	Effect size (95% CI)
Full-scale IQ			Perceptual Organisation Index				
Baseline	97.02 (13.93)			Baseline	95.00 (14.76)		
12 months	97.92 (14.65)	0.681	0.06 (0.00;0.36)	12 months	97.15 (14.83)	0.774	0.06 (0.00;0.40)
24 months	102.52 (14.54)	0.001	0.63 (0.29;0.97)	24 months	100.00 (16.81)	0.123	0.33 (0.00;0.74)
Performance IQ			Verbal Comprehension Index				
Baseline	96.41 (15.50)			Baseline	93.50 (11.38)		
12 months	98.95 (16.52)	0.170	0.22 (0.00;0.53)	12 months	95.12 (12.87)	0.528	0.13 (0.28;0.54)
24 months	104.15 (16.48)	0.001	0.65 (0.30;0.99)	24 months	99.43 (11.29)	0.055	0.41 (0.00;0.82)
Verbal IQ			Processing Speed Index				
Baseline	97.70 (13.36)			Baseline	91.80 (18.08)		
12 months	97.45 (14.33)	0.675	0.07 (0.24;0.38)	12 months	96.96 (19.21)	0.723	0.08 (0.00;0.49)
24 months	100.53 (12.57)	0.033	0.35 (0.02;0.67)	24 months	100.51 (20.88)	0.005	0.71 (0.23;1.19)

Abbreviations

AITT Arginine—insulin tolerance test
GHD Growth hormone deficiency

GH_{max}24h Maximum GH level during a spontaneous 24h GH profile

IGF-I Insulin-like growth factor I
ISS Idiopathic short stature
MPH_{SDS} Mid-parental height SDS

References

- Kriström B, Aronson AS, Dahlgren J, Gustafsson J, Halldin M, Ivarsson SA, Nilsson NO, Svensson J, Tuvemo T, Albertsson-Wikland K. Growth hormone (GH) dosing during catch-up growth guided by individual responsiveness decreases growth response variability in prepubertal children with GH deficiency or idiopathic short stature. J Clin Endocrinol Metab. 2009;94(2):483-90.
- Chaplin JE, Kriström B, Jonsson B, Hägglöf B, Tuvemo T, Aronson AS, Dahlgren J, Albertsson-Wikland K. Improvements in behaviour and self-esteem following growth hormone treatment in short pre-pubertal children. Horm Res Paediatr. 2011;75(4):291-303. Current Impact Factor: 1.713
- Chaplin JE, Kriström B, Jonsson B, Halldin Stenlid M., Aronson AS, Dahlgren J, Albertsson-Wikland K. When do short children realize they are short? Pre-pubertal short children's perception of height during 24 months of catch-up growth hormone (GH) treatment. Horm Res Paediatr. 2012;77(4):241-9

