Longitudinal Changes of Bone Mineral Content in Children with Cystic Fibrosis

Adela Chirita-Emandi ^{1,2}, Sheila Shepherd¹, Andreas Kyriakou ¹, Jane McNeilly³, Anne Devenny ⁴, S.Faisal Ahmed 1.Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, UK
2.Genetics department, University of Medicine & Pharmacy "Victor Babes", Timisoara, Romania
3.Department of Clinical Biochemistry, Southern General Hospital, Glasgow, UK
4.Department of Respiratory Medicine, Royal Hospital For Sick Children, Yorkhill, Glasgow, UK
Acknowledgements: Chirita-Emandi Adela was supported by an ESPE Clinical Fellowship

Aim: to examine factors that may determine longitudinal changes in bone mineralisation in

children with Cystic Fibrosis (CF).

Methods:

100 children(50 females) had DXA performed

- the data were expressed as expected bone mineral content for Bone Area SDS(BMCSDS).
 → 49 children had a second DXA
- \rightarrow 24 had three DXA, during the 10-yr period.

Results:

	T ₀ (n=100) mean	T ₁ (n=48) mean	T ₂ (n=24) mean	P (ANOVA)
Decimal age (years)	11.5	13.2	14.1	0.000
Age at PHV (years)	12.1	12.0	13	0.618
Height SDS	-0.2	0.1	0.0	0.125
BMI SDS	-0.1	0.2	-0.2	0.363
Vitamin D(ng/ml)	16.0	18.0	17.8	0.345
PTH (pg/ml)	38.6	43.4	45.3	0.547
Vitamin D/PTH ratio	0.4	0.5	0.4	0.495
LS BMC SDS	-0.3	-0.4	-0.5	0.046
TB BMC SDS	0.1	-0.1	-0.1	0.006
FEV1%	85.9	89.8	84.8	0.157
	number	number	number	
Impaired glucose tolerance (yes/no)	25	11	8	
Supplemental feeding (yes/no)	11	5	5	
Oral corticosteroids use (yes/no)	4	1	0	
Inhaled corticosteroids (yes/no)	45	15	6	

Figure 2.

A. Longitudinal changes at T0, T1, T2 in cases categorised by baseline vitamin D status.

B. Longitudinal changes in LS BMC SDS at T0, T1 and T2 categorised by baseline status of LS BMC SDS

$\Delta LS BMC SDS$

Table 1. Descriptive features of all children at T_0 , T_1 and T_2 . PHV=peak height velocity; SDS = standard deviation score; PTH=parathyroid hormone; BMC = bone mineral content; LS=lumbar spine; TS=total body; FEV1%= Forced expiratory volume in one second percent.

Worsened stationary improved n=15 n=19 n=14	۲
n=15 n=19 n=14	
$I_1 - I_0$ Time between 2.29 1.67 1.73 0.04 assessments (years) 2.29 1.67 1.73 0.04	0.048
T ₀ BMISDS -0.31 -0.13 0.58 0.04	0.040
T ₁ BMISDS -0.03 -0.11 0.78 0.05	0.053
T ₀ Vit D:PTH group (1, 2, 3, 4)3.272.282.770.02	0.010
T ₀ FEV1% 90.62 91.81 0.02	0.010
T1FEV1%78.1992.7496.620.02	0.012

Table 2. Factors influencing bone mineral content change by ANOVA.

Median LS BMC SDS decreased from T₀ to subsequent assessments(-0.3;-0.4;-0.5; p=0.053). Factors decreased bone mineral content: - longer time between DXA assessments

Figure 1. Baseline bone mass, vitamin D and PTH status

Vit. D deficiency <20ng/mL, insufficiency 21–29ng/mL, normal \geq 30ng/mL. High PTH levels if \geq 70ng/L, normal PTH if <70ng/L. N=normal; Vit D= \downarrow if vit. D deficient & insufficient; PTH = N if <70ng/L; PTH= \uparrow if \geq 70ng/L

- lower FEV1%
- lower BMI SDS
- low Vitamin D associated with high PTH.

Conclusions: Bone mineralisation as assessed by DXA decreases with time in children with CF. Lower FEV1%, poorer nutritional status and low vitamin D with high PTH were factors found to be associated with worsening BMC SDS.