

Addenbrooke's Hospital

Cambridge University Hospitals NHS Foundation Trust

Prenatal exposure to phthalates and phenols in relation to anogenital distance (AGD) at birth in male infants

B. G. Fisher^a, A. Thankamony^a, K. K. Ong^b, D. B. Dunger^a, I. A. Hughes^a, C. L. Acerini^a

^aDepartment of Paediatrics, University of Cambridge, Cambridge, United Kingdom; ^bMRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, United Kingdom

Introduction

- The increasing incidence of male reproductive disorders may be due to fetal exposure to putative endocrine disruptor chemicals (EDCs), such as phthalates and phenols¹.
- AGD is a biomarker of fetal androgen action in animals², and has recently been linked to Testicular Dysgenesis Syndrome in humans²⁻⁴.

Method

- Serum samples were collected from pregnant women between 10-12 weeks of gestation as part of a larger prospective study (n=334). • 27 EDCs (16 phthalate monoesters, 9 phenols) were measured using liquid chromatography/tandem mass spectrometry. • Statistical analyses excluded EDCs detectable in <45% of mothers.

Objective

• To examine the relationship between prenatal phthalate and phenol exposure and birth AGD in male infants.

EDC levels below the limit of detection (LOD) were assigned a value equal to LOD/ $\sqrt{2}$ if the data were not highly skewed or LOD/2 if the data were highly skewed⁵.

• Birth AGD in males (measured from centre of anus to base of scrotum) was recorded (n=151).

Results

EDC characteristics

• 6 phthalate monoesters (MEP, MiBP, MnBP, MEHP, MECPP, MCiOP) and 3 phenols (BPA,TCS, BP-3) were detectable in ≥45%; median concentrations were 1.57, 3.77, 1.30, 1.17, 0.52, 0.19, 1.78, 0.75 and 0.30 µg/l, respectively.

- Summed levels were calculated for:
 - Di(2-ethylhexyl)phthalate metabolites: ΣDEHPm
 - \circ Dibutylphthalate isomer metabolites: $\Sigma MBP_{(i+n)}$
 - All phthalate metabolites: Σall.phth.m

Male infant characteristics (mean ± SD)

Maternal age (years)	33.0 ± 4.1
Maternal pre-pregnancy BMI (kg/m ²)	24.1 ± 4.1
Gestational age (weeks)	39.9 ± 1.8
Birth weight (kg)	3.49 ± 0.55
Birth length (cm)	51.5 ± 2.6
Birth AGD (mm)	19.5 ± 5.5

Associations

• AGD was negatively correlated with $\Sigma DEHPm$ (rho=-0.188, p=0.021) and $\Sigma all.phth.m$ (rho=-0.203, p=0.012), but no other EDCs. • In a hierarchical multiple regression model, potential confounding factors (maternal age, BMI, gestation, birth weight, birth length) explained 4.5% of variance in birth AGD; entry of EDC levels explained an additional 7.1%. In this model, only SDEHPm (beta=-0.210, p=0.019) and BMI (beta=0.177, p=0.043) were significant.

	Non-parametric correlation		Multiple regression	
	Spearman's rho correlation coefficient of EDC concentration	P value	Beta correlation coefficient of log- transformed EDC concentration	P value
MEP	-0.060	0.463	-0.090	0.304
ΣMBP _(i+n)	0.018	0.831	0.043	0.624
ΣDEHPm	-0.188	0.021	-0.210	0.019
MCiOP	-0.011	0.897	0.014	0.871
BPA	0.029	0.726	0.072	0.410
TCS	0.013	0.872	0.026	0.768
BP-3	-0.084	0.308	-0.128	0.147

• In a separate analysis, Σall.phth.m explained an additional 4.5% of variance in AGD when potential confounders were controlled for (beta=-0.213, p=0.014).

Conclusion

• These results suggest that exposure to phthalates during the first trimester (specifically DEHP and possibly others in combination), but not phenols, may adversely affect male reproductive development.

Acknowledgements

References

I. Bergman A, Heindel JJ, Jobling S, Kidd KA, Thomas Zoeller R, editors. State of the science of endocrine disrupting chemicals – 2012: an assessment of the state of the science of endocrine disruptors prepared by a group of experts for the United Nations Environment Programme and World Health Organization. Geneva: WHO Press; 2012.

2. Hsieh MH, Breyer BN, Eisenberg ML, Baskin LS. Associations among hypospadias, cryptorchidism, anogenital distance, and endocrine disruption. Curr Urol Rep 2008;9(2):137-42.

3. Swan SH, Main KM, Liu F, Stewart SL, Kruse RL, Calafat AM, et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect 2005;113(8):1056-61.

4. Thankamony A, Lek N, Carroll D, Williams M, Dunger DB, Acerini CL, et al. Anogenital distance and penile length in infants with hypospadias or cryptorchidism: comparison with normative data. Environ Health Perspect 2014;122(2):207-11.

5. Hornung RVV, Reed LD. Estimation of average concentration in the presence of nondetectable values. Appl Occup Environ Hyg 1990;5(1):46-51.

We are very grateful to Professor Anders Juul, Dr Anna-Maria Andersson and Dr Hanne Frederiksen - Department of Growth and Reproduction, Copenhagen University Hospital, Denmark for undertaking the analysis of serum EDC levels and for their support and advice with this project.