

Genotype and Phenotype Characteristics of Patients with Nonclassical Congenital Adrenal Hyperplasia due to 21-hydroxylase Deficiency

P2-D1-263

Nese AKCAN¹, Oya UYGUNER², Güven TOKSOY², Esin KARAKILIÇ¹, Banu AYDIN¹, Firdevs BAŞ¹, Nurcin SAKA¹, Şükran POYRAZOĞLU¹, <u>Rüveyde BUNDAK¹</u>, Hülya KAYSERİLİ², Feyza DARENDELİLER¹ ¹Istanbul University, Istanbul Faculty of Medicine, Department of Pediatrics, Pediatric Endocrinology ² Istanbul University, Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul, TURKEY

Disclosure : The authors have nothing to disclose.

BACKGROUND: Nonclassical congenital adrenal hyperplasia (NCCAH), which is generally presented with symptoms of androgen excess, is inherited autosomal recessive due to different kind of mutations in the CYP21A2. Genotype-phenotype correlation studies in large groups of patients are associated with predominantly classic congenital adrenal hyperplasia. Prediction of phenotype from genotype tends to be more difficult among patients who are compound heterozygotes for two different mutations or those carrying mutations of intermediate severity. Recently, predisposition of CYP21A2 gene duplications for germ line de novo mutations in the next generation has been reported

AIM: To evaluate clinical and molecular characteristics of the patients with NCCAH.

METHOD: Twenty-two patients from unrelated 21 families (20F, 2M), diagnosed as NCCAH according to their clinical, hormonal and molecular (biallelic or monoallelic mutations) findings, were included and data were collected retrospectively. History and physical findings were extracted from existing medical records. Pubertal stage of all patients and Ferriman Gallwey score (FGS) of females were assessed by physical examination. Hirsutism was defined as FGS≥ 8. Menstrual irregularity or oligomenorrhea was defined as menstrual cycles \geq 35 days or fewer than 8 cycles per year. Hormonal testing was done in the follicular phase of the cycle whenever possible. Basal serum 17-hydroxyprogesterone (17-OHP), androstenedione, cortisol, LH, FSH, estradiol, testosteron levels were measured. Measurement of serum 17-hydroxyprogesterone following stimulation with a 0.25 mg adrenocorticotrophic hormone were evaluated. Basal, 30 and 60 min samplings for serum 17-OHP and cortisol were measured. Genetic analysis was performed in Department of Medical Genetics of Istanbul Faculty of Medicine. Sequencing and multiplex ligation-dependent probe amplification (MLPA) were used for moleculer analysis.

Table 1. Clinical findings of patients with NCCAH

Patient	Gender	r Presentation					
		Age(yrs)	Findings	Weight	Height	BMI	Bone age
				SDS	SDS	SDS	(yrs)
1 (ABU)	Female	16.5	Menstrual irregularity	-0.4	-0.3	-0.3	18
2 (CŞ)	Female	17.1	Menstrual irregularity,	-0.7	-1.0	0.04	
			Hirsutism				
3 (ES)	Female	7.3	Precocious puberty	0.6	0.4	0.6	7.8
4 (MÖ)	Female	14.7	Hirsutism	1.9	0.4	1.7	18
5(TS)	Female	6.9	Precocious puberty	0.8	0.2	0,9	8.3
6 (DB)	Female	17	Hirsutism	0,4	-1,4	1,4	
7 (ED)	Female	8.3	Precocious puberty	-0.08	-0.4	0.2	7.8
8 (HA)	Female	13.4	Hirsutism, gaining weigth	2.4	-1.4	2.9	15
9 (SD)	Female	8.1	Premature adrenarche,	2.5	1.7	2.0	7,8
			gaing weight				
10 (TBY)	Male	10.2	Precocious puberty	1.1	0.3	1.2	12.5
11(LB)*	Female	16.6	Hirsutism	-1.3	-2.0	0.01	17
12 (RB)*	Female	13	Hirsutism	2.1	-0.3	2.3	
13 (SG)	Female	6.6	Premature adrenarche	0.1	-0.7	0.7	7.8
14 (FK)	Female	12.6	Hirsutism	-0.3	0.08	-0.3	
15 (MÇ)	Female	8.4	Premature adrenarche	0.5	2.0	-0.6	13
			Cliteromegaly				
16 (KA)	Female	6	Premature adrenarche,	-1.5	-0.6	-1.9	7.8
			hirsutism				
17 (NY)	Male	5.8	Premature adrenarche	2.4	-0.9	-3.2	5
18 (NA)	Female	7.5	Precocious puberty	0.5	1.8	-0.5	10
19 (OC)	Female	9.8	Premature adrenarche	-0.1	-0.3	0	11
20 (ES)	Female	3.1	Premature adrenarche	5.2	3.2	4.2	5
21 (DD)	Female	7.5	Premature adrenarche	0,8	-0.4	1.3	8.5
22 (MG)	Female	11.1	Hirsutism, hair loss	0.1	-0.4	0.4	10.5
Mean±SD		10.3±4.2		0.6±1.6	0.01 ±1.2	0.6 ±1.6	10.6±4.1
(Ranges) *Siblings		3.1/17.1		-2.4/5.1	-2/3.2	-3.2/4.2	5/18

RESULTS: Findings are summarized in Table 1 and 2. Eleven different mutations, including one novel (p.P214L) were detected in patients. Clinical and hormonal findings were consistent with NCCAH in 8 patient who had mutation in only one allel. The presenting symptoms were clinical hyperandrogenemia (hirsutism, acne, hair loss) (n=9), premature adrenarche (n=8), precoccious puberty (n=5), menstrual irregularity (n=2) and cliteromegaly (n=1). Cortisol responses to ACTH stimulation were normal whereas 17 –OHP levels were high. CYP21A1P (pseudogene) or CYP21A2 (active gene) gene duplications were detected in 4 patients. Altough three of these patients had moleculer analysis results as carrier; the hormonal and clinical findings were consistent with disease. Two unrelated patients had CYP21A2 duplication and point mutations (p.Q319X) similar to their mothers (Family 1 and 2). Interestingly, their mothers were normal clinically and had no hormonal findings. One patient carried two different (p.V282L and p.P454S) mutations in a single allel. The p. P454S was de novo in cis position according to parental analysis and her father had active gene duplication with p.Q319X mutations which wasn't inherited (Family 3). Other patient with homozygous p. V282L also had novel de novo heterozygous p.P214L mutation and CYP21A1P duplication (Family 4). One patient had conversion of exon 4 from mother's allel carrying heterozygous p. I173N mutation and heterozygous p.V282L mutation from father's allel (Family 5). Sequence analysis of CYP21A2 is complicated with various micro conversion events from pseudogene. Therefore care must be taken to include overlapping PCR producers sequenced from multiple sites which are colloborated with MLPA analysis, including parenteral investigations.

ab	le	2.	Η	ormo	onal	and	mo	lecul	ar	find	ings	of	pati	ients	with	N	CCA	AH
----	----	----	---	------	------	-----	----	-------	----	------	------	----	------	-------	------	---	-----	-----------

Patient	17-OH		Cortisol	(µg/dl)		Mutation	Mutation			
	progeste	erone								
	(ng/ml)									
	Basal	After	Basal	After	Allel 1		Allel 2			

		ACTH		ACTH		
1	29.3	54.6	13.9	34.7	p.Q319X CYP21A2 duplication	Wild
2	3.0	12.7	10.9	32.6	p.Q319X CYP21A2 duplication	Wild
3	2.3	27.0	8.8	29.9	p. V282L p. P454S <i>CYP21A1P</i> duplication	Wild
4	13.6	16.4	22.7	26.0	p. V282L p. P214L (novel) <i>CYP21A1P</i> duplication	p. V282L
5	4.0	57.9	10.4	32.6	p.I173N Exon 4 conversion	p.V282L CYP21A1P duplication
6	5.4	34.0	13.4	22.1	p.P31L	p.V282L
7	6,0	21.2	19.1	38.7	c.293-13C/A>G	Wild
8	2.1	13.0	13.4	42.2	p.V282L	Wild
9	17.8	20.0	16.3	20.4	p.V282L	8bp del
10	11.0	60.8	12.5	17.8	p. V282L	p. V282L
11	35.1	-	22.1		p.P31Q c.293-13C/A>G	Wild
12	84.0	-	17.9		p.P31Q c.293-13C/A>G	Wild
13	1.7	9.5	10.0	33.2	8bp del	8bp del
14	9.5	16.0	13.5	25.3	p.V282L	8bp del

- Gene conversion, deletion and duplication may predispose new point mutations in the next generations.
- Complex structure of CYP21A2 locus requires that sequencing results of patients should be evaluated in conjuction with deletion / duplication analysis tests, further accompained with parental investigations.
- Analysis of more number of patients with parental analysis will be valuable to understand the molecular patology underlining NCCAH. References

1) Araújo RS, Mendonca BB, Barbosa AS, et all. Microconversion between CYP21A2 and CYP21A1P promoter regions causes the nonclassical form of 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2007 Oct;92(10):4028-34. 2)Baumgartner-Parzer SM, Fischer G, Vierhapper H. Predisposition for de novo gene aberrations in the offspring of mothers with a duplicated CYP21A2 gene. J Clin Endocrinol Metab. 2007 Mar;92(3):1164-7.