

Growth hormone treatment in children with Silver-Russell syndrome

C.C.J. Smeets¹, J.S. Renes¹, M. van der Steen², A.C.S. Hokken-Koelega^{1,2}

Dept. Paediatrics, Division of Endocrinology, Erasmus MC Sophia, Rotterdam, The Netherlands
Dutch Growth Research Foundation, Rotterdam, The Netherlands

I.smeets@erasmusmc.nl

Conclusion

Patients with Silver-Russell syndrome (SRS) are shorter at start of GH treatment than non-SRS patients born SGA. SRS patients show a better weight- and height gain in the first year of GH treatment and attain a similar adult height as non-SRS

Background

Silver-Russell syndrome (SRS) is characterized by small for gestational age (SGA) birth, dysmorphic features (picture 1) and severe short stature. SRS is a clinical diagnosis. In approximately 50% of patients, (epi)genetic alterations are detected (~40% hypomethylation of imprinting center region (ICR) 1 on 11p15, ~10% maternal uniparental disomy (mUPD) 7).

Growth hormone (GH) treatment improves height in short children born SGA. However, data on response to GH for SRS patients are very limited.

Picture 1: Frontal bossing, triangular face and clinodactyly in SRS

Methods

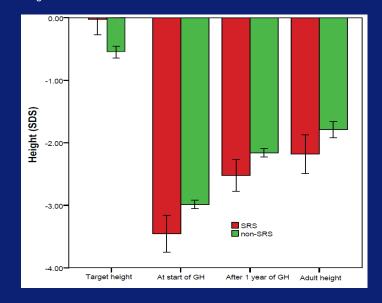
First year treatment response and adult height (AH) were compared between 33 SRS patients and 294 patients born SGA without SRS (non-SRS).

All SRS patients were diagnosed based on the scoring system of Netchine et al., 2007. The diagnosis was genetically confirmed in 19 (57.6%) patients (n=13 hypomethylation ICR1, n=6 mUPD7). All subjects were treated with GH 1 mg/m2/day (0.035 mg/kg/d).

Table 1: Patient characteristics

	SRS	non-SRS	p-value
Boys/girls	17/16	158/136	
Age at start GH	5.2 (2.5)	6.5 (2.1)	0.77
Height SDS at start GH	-3.45 (0.83)	-2.99 (0.57)	0.003*
Weight/height SDS at start	-2.68 (1.26)	-1.35 (1.17)	0.72
Target height SDS	-0.03	-0.54	0.34
First year height gain SDS	0.93 (0.38)	0.83 (0.28)	0.002*
First year weight/height gain	0.52 (0.82)	0.30 (0.45)	0.001*
Adult height SDS	-2.18 (0.70)	-1.79 (0.75)	0.338
Total height gain SDS	1.37 (0.89)	1.14 (0.69)	0.164
Median duration of GH to AH (yrs)	9.94 (2.81)	8.59 (1.88)	0.17

No conflict of interest


Objective

To investigate the response to GH treatment in SRS vs. non-SRS patients born SGA.

Results

- Mean height SDS increased in first year of GH with 0.93 SDS (from -3.45 to -2.52 SDS) in SRS vs. 0.83 SDS (from -2.99 to -2.16 SDS) in non-SRS (p=0.002).
- Weight for height SDS increased in first year of GH with 0.52 SDS in SRS vs. 0.30 SDS in non-SRS (p=0.001).
- Mean AH (n=22 SRS, n=131 non-SRS) was -2.19 SDS in SRS vs. -1.77 SDS in non-SRS (p=0.34). Total height gain was 1.37 SDS in SRS vs. 1.14 SDS in non-SRS (p=0.16). AH en total height gain were similar in genetically confirmed and idiopathic SRS.
- GH treatment was well tolerated in SRS as well as non-SRS. No adverse events related to GH treatment were observed.

Figure 1: Height (SDS) at start of GH, after 1 year of GH and adult height in SRS and non-SRS.

