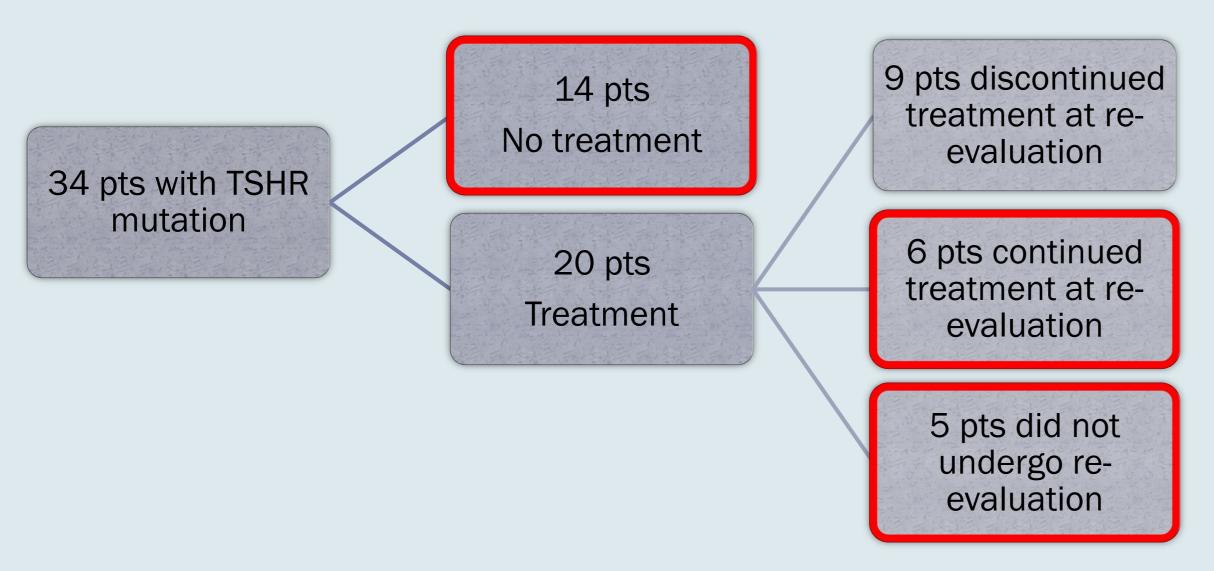
Mutation of the TSH receptor gene: a longitudinal study in children with non-autoimmune subclinical hypothyroidism

Vigone MC¹, Sonnino M¹, Guizzardi F³, Di Frenna M¹, Caiulo S¹, Gelmini G³, Persani L^{2,3}, Weber G¹

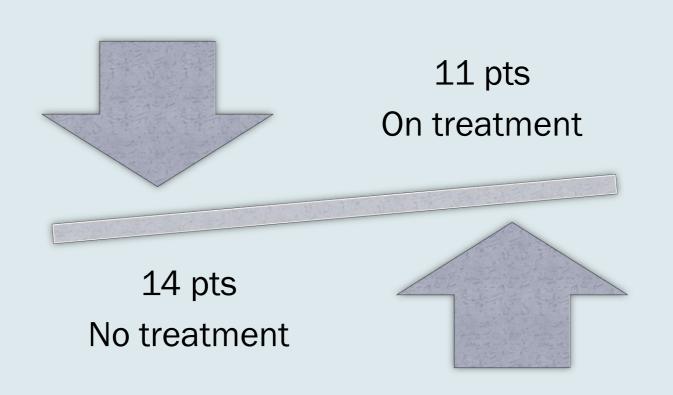
¹ Department of Pediatrics, Vita-Salute San Raffaele University, San Raffaele Hospital, Milan ² Dept of Clinical Sciences and Community Health, University of Milan ³Lab of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy

BACKGROUND

Neonatal screening strategies revealed an increase in hypothyroidism associated with an in-situ thyroid gland due to TSH receptor (TSHR) mutations.


OBJECTIVE AND HYPOTHESIS

Determine the impact of TSHR mutations on clinical course, biochemical parameters and therapeutic approach in children carrying this mutation.


Hypothesis: therapy may be unnecessary in partial TSH resistance due to a TSHR mutation.

METHODS

 We retrospectively evaluated diagnosis and re-evaluation parameters in 34 patients (pts) with non-autoimmune subclinical hypothyroidism and a diagnosed TSHR mutation.

Ultrasound exam (US), Auxological parameters, DEXA, Bone age, Biochemical parameters (total cholesterol, HDL, triglycerides, AST, ALT, ALP, CPK) and Developmental Quotient (DQ)) were compared between pts

RESULTS

Diagnosis of all TSHR mutation pts:

• 53% at screening, 23% for familial thyroid disease, 15% for signs/symptoms, 9% casually.

Age range: 0 -11 years

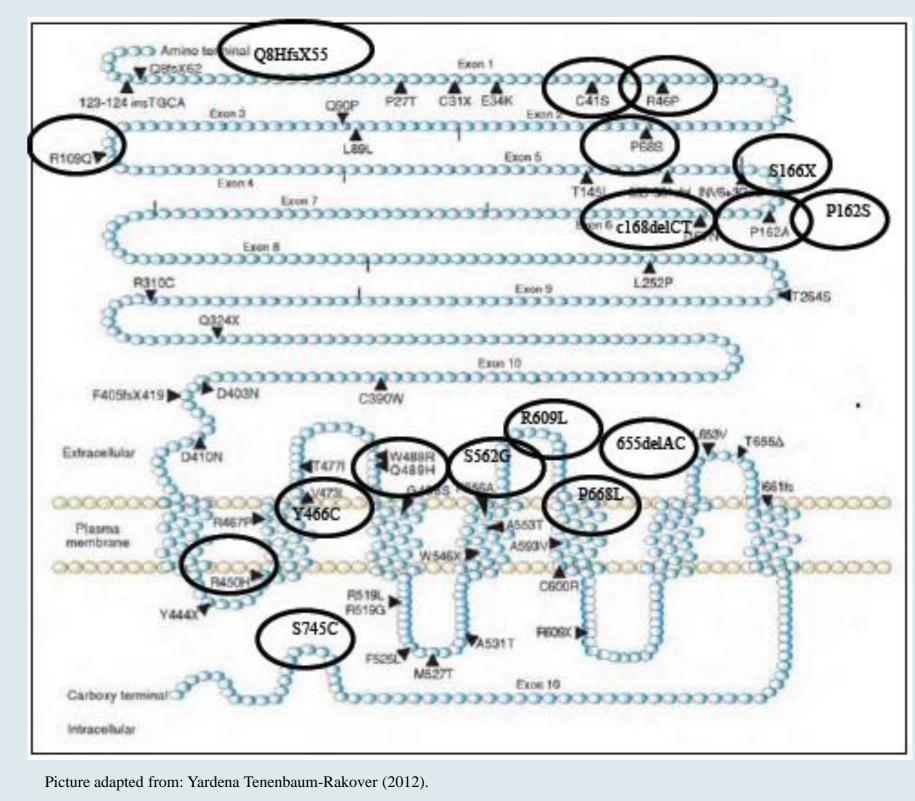
• Mean I spot: $8.4 \pm 4 \text{ mU/L}$

• Mean TSH: 14.2 ± 13 mcU/ml (range 5.3 - 74.9) • Mean FT4: 1.27 ± 0.2 ng/dl (range 0.27- 2.09)

Ultrasound:

In treatment	Hypoplastic	Normal	Hyperplastic
First US	27%	72%	0%
Last US	55%	44%	0%

NO	Hypoplastic	Normal	Hyperplastic
treatment			
First US	15%	84%	0%
Last US	12%	75%	12%


Therapy vs No Therapy:

height sds, weight sds, BMI sds, target height sds, bone	n.s.
mineral density z-score, chronological age-bone age and biochemical parameters.	
height sds-target height sds	p < 0.05
Mean DQ scores were within the average range in all pts	n.s.

Re-evaluation: 15 pts underwent etiological re-evaluation

- 60% discontinued treatment (mean TSH 7.6 \pm 3.2 mcU/ml, mean FT4 1.16 \pm 0.2 ng/dl
- 40% resumed treatment (mean TSH 22.2 \pm 10.2 mcU/ml, mean FT4 1.0 \pm 0.23 ng/dl
 - 4 pts: Compound heterozygote for a TSHR mutation
 - 1 pt: SGA

Mutations found in our study:

CONCLUSIONS

In conclusion, our data indicates that children diagnosed with non-autoimmune subclinical hypothyroidism due to a TSHR mutation might not be in need of treatment unless they are compound heterozygous for the mutation or in case of selected cases of single heterozygous children born SGA