Comparison of measured lean body mass (LBM $_{\rm DXA}$) and estimated LBM $_{\rm BIA}$ in children with growth hormone deficiency (GHD)

Roland Schweizer, Julian Ziegler, Gerhard Binder

Pediatric Endocrinology and Diabetology,

University Children's Hospital, Tübingen, Germany

Background

Long standing GHD causes loss of muscle mass. DXA enables the measurement of LBM_{DXA} but is accompanied with a potentially harmful x-ray exposition. BIA measures the electric resistance of the body which correlates with LBM. A comparison of both methods in children with GHD has not been performed yet.

Aim

Calculation of a regression formula for LBM using resistance and anthropometry based on LBM measured by DXA in children with GHD.

Conclusion

Calculation of LBM with help of anthropometry and BIA shows a good correlation with measured LBM in the total group of GHD patients, but in individual patients there is a broad variation between measured and calculated LBM.

Method

We recruited 120 prepubertal children (31 females) with GHD defined as growth failure, bone age retardation, low IGF-I and two GH test peaks <10 μ g/L (mean±SD; age 7.68±2.96 yrs, peak GH 5.72±1.76 ng/ml). Height, weight, LBM by DXA (Lunar, DPXL/PED), Resistance (R) and Reactance (Xc) by BIA (BIA 2000-M) were measured before the start of GH therapy (see table). Using multiple stepwise regression analysis we established a formula to calculate LBM based on age, height, weight, R and Xc.

Results

The best equation formula calculated was:

LBM_{BIA} [kg] = 233.64 x height [cm] + 181.41 x weight [kg] - 6.89 x R[Ω] - 9421.74

Correlation of measured (LBM $_{\rm DXA}$) and calculated (LBM $_{\rm BIA}$) was high (R=+0.98, p<0.001) (see Fig. 1). Comparison of LBM $_{\rm DXA}$ and LBM $_{\rm BIA}$ by Blant-Altman plot gave a mean difference of -0.075 ± 0.923 kg within an LBM $_{\rm DXA}$ range of 7 to 30 kg. In an individual patient the delta between LBM $_{\rm BIA}$ and LBM $_{\rm DXA}$ were up to 3 kg at a LBM $_{\rm DXA}$ of 30 kg (see Fig. 2).

Patient characteristics

	mean	SD
Age [yrs]	7,68	2,96
Height [cm]	111,2	14,7
Height [SDS]	-2,89	0,55
Weight [kg]	19,5	7,3
Weight [SDS]	-1,99	0,68
BMI [kg/m²]	15,23	1,90
BMI [SDS] _{LMS}	-0,72	0,86
LBM [g]	14745	5117
Fat mass [g]	4045	2672
Resistance (BIA) [Ω]	776	94
Reactance (BIA) [Ω]	71	10

Results

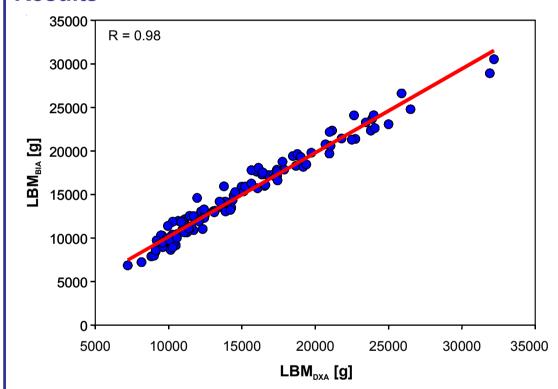


Figure 1: Correlation of measured and calculated LBM

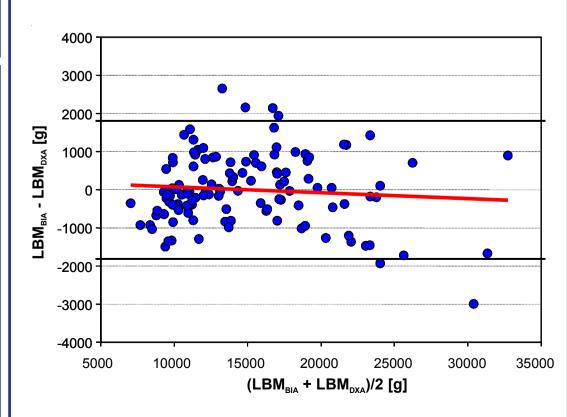


Figure 2: Blant-Altman-Blot of measured and calculated LBM

Contact: roland.schweizer@med.uni-tuebingen.de

Conflicts of Interest: The authors have nothing to declare.