

NOVEL MUTATION IN A NEWBORN WITH A RARE CAUSE OF 46,XY SEX REVERSAL: 17β-HYDROXYSTEROID DEHYDROGENASE TYPE 3 DEFICIENCY

Korcan Demir¹, Melek Yıldız¹, Özlem Nalbantoğlu Elmas¹, Hüseyin Anıl Korkmaz¹, Özgür Olukman², Filiz Hazan³, Behzat Özkan¹ ¹Division of Pediatric Endocrinology, Dr. Behçet Uz Children's Hospital, İzmir, Turkey; ²Division of Neonatology, Dr. Behçet Uz Children's Hospital, İzmir, Turkey; ³Division of Medical Genetics, Dr. Behçet Uz Children's Hospital, İzmir, Turkey

Disclosure statement: The authors have nothing to disclose.

Testicular 17β-hydroxysteroid dehydrogenase type 3 deficiency

*Defect in conversion of androstenedione to testosterone.

*Rare, phenotype varies between completely external female genitalia - micropenis and hypospadias.

- *Mostly unnoticed and raised as females and virilization during puberty.
- *Gender reassignment from female to male: 39-64%
- *Diagnosis: Low serum testosterone/androstenedione (T/A) ratio after hCG stimulation (normal, >0.8) and genetic analysis.¹

8-day-old newborn

Mutation analysis of HSD17B3

*Homozygous for a novel missense mutation in exon 6: p.H155P (c.464A>C). Bioinformatic analyses with PolyPhen2 and Mutation Taster were in aggreement: probably damaging (score, 0.997) and disease causing (probability, 0.919), respectively.

*Genetic counseling including information regarding preimplantation genetic testing was provided.

Decision on gender

Complaint: Bilateral inguinal swelling.

Past history: Birth weight of 3300 g, family history unremarkable except first-degree consanguinity between parents.

Physical examination: Normal auxology, vital signs, and systemic examination (Figure 1)

Figure 1. Genital examinationdisclosed normal female externalgenitaliawith no cliteromegaly,separatevaginalandopenings, and gonad-like structuresin the inguinal region.

 Table 1. Hormonal values throughout the follow-up

	8 th d	33 rd d	39 th d*	42nd d#	81 st d	81 st d ^{\$}
FSH, mIU/mL	0.43	0.81	-	-	0.75	2.18
LH, mIU/mL	< 0.1	< 0.1	_	_	< 0.1	4.87

Thorough discussion with the parents yielded female gender preference but gonadectomy was deferred to be performed during childhood after gender identity can be evaluated.

Discussion

HCG stimulated T/A ratio of less than 0.8 is very suggestive of the diagnosis, however, low T/A ratios may also be encountered in cases with gonadal dysgenesis and high T/A ratios have also been reported.^{2, 3}

In CAIS but not PAIS, normal surge of plasma LH and testosterone during the first few months of life is absent. Hormonal data regarding mini-puberty in 17 β -HSD3 deficiency are scarce. In addition to our case, we observed a similar situation in a report by Bilbao JR.⁴ This unique condition can be attributed to lack of prior androgen action on gonadotropic axis.⁵

Total testosterone, ng/dL	25	<2.5	<2.5	26.7	<10	-	
Androstenedione, ng/dL	300	-	38	120	-	-	
AMH, ng/mL	-	-	160	-	-	-	
ACTH, pg/mL	13.7	_	-	-	-	-	
Cortisol, µg/dL	10.7	-	-	_	-	-	

*Basal levels before hCG test, [#]levels obtained 24 hours of the last dose of hCG, ^{\$} peak levels during LHRH test.

Ultrasonogprahy: No uterus or ovary but testis and epididymis tissue in the inguinal regions bilaterally.

Karyotype: 46,XY by both QF-PCR and conventional method.

Genetic analyses: No and rogen receptor or 5α -reductase mutation

hCG test: Suggested 17β-HSD3 deficiency

*inadequate total testosterone response despite an >10-fold increase

*a normal testosterone/dihydrotestosterone ratio of 2

*a low testosterone/androstenedione ratio of 0.22 (normal, >0.8)

Despite rearing such infants as males was reported to be successful, majority

have been reared as females.^{3, 6, 7} An intermediate risk of germ cell tumors,

unknown fertility issues, and requirement for several surgical procedures

In 46,XY cases with normal testicles and female external genitalia

*Lack of mini-puberty should not directly lead to CAIS.

*17β-HSD3 deficiency should be sought via testosterone/androstenedione

ratio and mutation analysis.

*In order to prevent virilization, orchiectomy should be performed before

puberty starts if reared as females.

REFERENCES: 1. Minu MG, Horm Res Pediatr 2010;74:229-240. 2. Faisal AS, Clin Endocrinol 2000;53:697-702. 3. Lee YS, Clin Endocrinol (Oxf) 2007;67:20-28. 4. Bilbao JR, Eur J Endocrinol 1998;139:330-333. 5. Bouvattier C, J

Clin Endocrinol Metab 2002;87:29-32. 6. Gross DJ, Acta Endocrinol (Copenh) 1986;112:238-246. 7. Chuang J, Int J Pediatr Endocrinol 2013;2013:15.