REGION SJ/ELLAND **Concomitant changes in Full Body DXA Values and BMI SDS** during Multidisciplinary Treatment of Childhood Obesity

Nielsen TRH^{1,2}, Fonvig CE^{1,2}, Gamborg M³, Lausten-Thomsen U¹, Holm JC¹

¹The Children's Obesity Clinic, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark, ²The Novo Nordisk foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark, ³Institute of Preventive Medicine, Copenhagen University Hospital, Copenhagen, Denmark

Objective	Methods	Results Table 1: Baseline values (mean and ranges).		
The aim of this study was to investigate changes in body composition in relation to changes in body mass index standard deviation score (BMI SDS) during a multidisciplinary intervention for childhood obesity.	One-hundred-ninety-three children and youths (108 girls) were included from The Children's Obesity Clinic upon entering treatment for childhood obesity.			
			BMI SDS	%BF
		Total	2.8	43.6
	Inclusion criteria:	(N=193)	(1.5-5.2)	(28.9-57.1)
		Girls	2.71	44.2
	 Age 6-21 years 	(N=108)	(1.5-5.2)	(34.9-57.1)
Hypothesis: Reductions in body fat percentage may not be revealed by	 BMI above the 90th percentile for age and sex according to Danish BMI 	Boys	2.97	42.9
		(N= 85)	(1.6-4.9)	(28.9-53.1)

reductions in BMI SDS.

Background

Obesity is a continuously increasing problem worldwide, and especially the increase in childhood obesity is alarming¹.

Body mass index (BMI) has been described as a valuable and easy measure of body fatness, and has been found to correlate strongly with body fat measured by dual-energy Xray absorptiometry (DXA) in healthy children and adolescents². However in adult normal weight and obese women and in overweight and obese men, BMI seems to have a relatively poor ability to predict adiposity ³. In children it seems, that BMI standard deviation score (SDS) has a low sensitivity and a high specificity hereby wrongly classifying obese individuals in the normal weight category⁴.

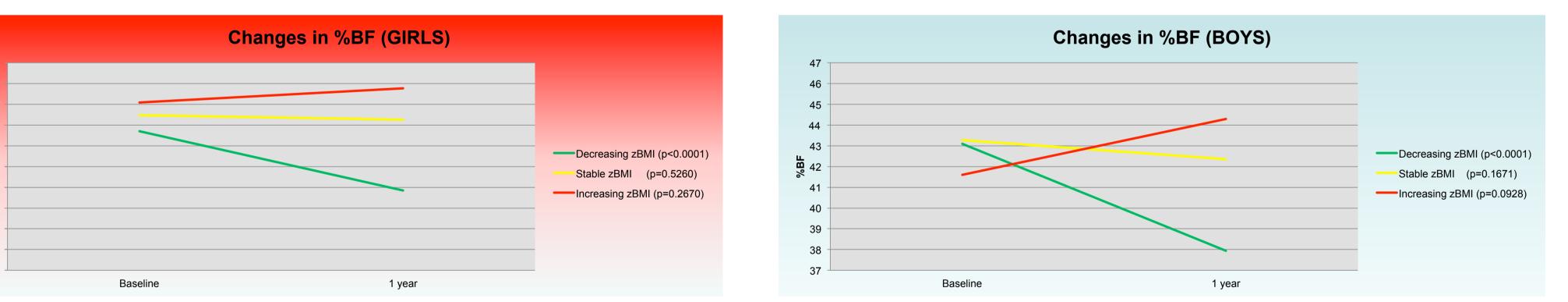
46

charts⁵

DXA investigation was performed at the baseline and each participant offered follow-up DXA scans in intervals of 1-2 years to monitor treatment response.

All study participants were examined immediately before the DXA examination with anthropometric data comprising height and weight.

The study has been ethically approved by


57% reduced their BMI SDS, 30% had a stable BMI SDS (Δ BMI SDS +/- 0.15), and 13% increased their BMI SDS during treatment.

Reductions in BMI SDS were positively correlated to reductions in %BF (P<0.0001).

The group reducing BMI SDS reduced their %BF by -4.0% (95% CI: [-4.8; -3.3], P<0.0001), the group with a stable BMI SDS tended to reduce their %BF by -0.5% (95% CI: [-1.1; -0.2], P=0.15), and the group increasing BMI SDS increased their %BF by 1.6% (95% CI: [0.1; 3.1], P=0.04).

the Regional Ethical Committee of Region Zealand (Project number: SJ-104) and performed in accordance with the Helsinki Declaration.

Acknowledgements

This study is part of research activities in TARGET (The impact of our genomes on individual treatment response in obese children, (http://target.ku.dk/) and BIOCHILD (Genetics and systems biology of childhood obesity in India and Denmark, (http://biochild.ku.dk/). TARGET and BIOCHILD are supported by the Region Zealand Health Scientific Research Foundation and the Danish Council for Strategic Research (grant 11-115917, 11-116714 and 2101-06-0005). In addition, this study is part of The Danish Childhood Obesity Biobank (Clinical Trials.gov IDno.: NCT00928473).

References

1. Wang Y, Lobstein T. Worldwide trends in childhood overweight and obesity. Int J Pediatr Obes IJPO Off J Int Assoc Study Obes 2006;1(1):11–25.

2. Pietrobelli A, Faith MS, Allison DB, Gallagher D, Chiumello G, Heymsfield SB. Body mass index as a measure of adiposity among children and adolescents: a validation study. J Pediatr 1998;132(2):204–10.

3. Kennedy AP, Shea JL, Sun G. Comparison of the classification of obesity by BMI vs. dual-energy X-ray absorptiometry in the Newfoundland population. Obes Silver Spring Md 2009;17(11):2094–9.

4. Warner JT, Cowan FJ, Dunstan FD, Gregory JW. The validity of body mass index for the assessment of adiposity in children with disease states. Ann Hum Biol 1997;24(3):209–15.

5. Nysom K, Mølgaard C, Hutchings B, Michaelsen KF. Body mass index of 0 to 45-y-old Danes: reference values and comparison with published European reference values. Int J Obes Relat Metab Disord J Int Assoc Study Obes 2001;25(2):177–84.

Conclusion

During multidisciplinary treatment of childhood obesity, a reduction in %BF is possible even in children exhibiting a stable BMI SDS indicating a favorable treatment response in a larger percentage of children treated.

Correspondence to: Tenna Ruest Haarmark Nielsen, ter@regionsjaelland.dk

