

RESULTS OF SULPHONYLUREAS TREATMENT IN PATIENTS WITH NEONATAL DIABETES MELLITUS DUE TO KCNJ11/ABCC8 GENE MUTATIONS IN VIETNAM Can Thi Bich Ngoc¹, Vu Chi Dung¹, Bui Phuong Thao¹ Nguyen Ngoc Khanh¹, Nguyen Phu Dat¹, Nguyen Thi Hoan¹, Sian Ellard², Maria Craig³, Le Thanh Hai¹

¹Department of Endocrinology, Metabolism and Genetics. Vietnam National Hospital of Paediatrics, Hanoi, Vietnam; ²Molecular Genetics, Old Path Lab, Royal Devon & Exeter Hospital, Barrack Road, Exeter, UK

³ The Children Hospital at Westmead, Sydney, Australia

Introduction

• Neonatal diabetes mellitus (NDM) may be defined as hyperglycemia diagnosed within the first 6 months of life which is permanent NDM or transient NDM. In there, the most common cause of NDM is associated with activating mutations in the *KCNJ11* gene, which encodes Kir6.2-a subunit of the ATP-sensitive potassium channel (KATP) of the beta cell and *ABCC8*, which encodes the sulfonylurea receptor (SUR1)-the other subunit of the beta-cell KATP channel. *ABCC8* and *KCNJ11* are located on chr 11. • Patients with *ABCC8/KCNJ11* mutation can be treated with sulfonylurea replacing insulin injection.

Results of Switch to Sulfonylurea Therapy:

Table 1. Baseline characteristics of the Patients when transferring to SU

Results

Characteristics	KCNJ11 mutation	ABCC8 mutation
Mutations	R201H, R201C (2 patients), R50Q, E229K, E292G,	R1183W, E747X, E747X &E128K, A1153G, c.3403- 1G>A/E1507Q
Neurologic features	1 (R201C)	1 (E747X)
Male sex	3	3
Birth weight (g)	2683.3 ±608	2740 ±433.5
Age at diagnosis (day)	33.16± 10.24	47.2±29.8
Ketoacidosis at diagnosis	5	2
Age at initiation of SU treatment	1.8± 1.9 (median 0.95)	2.81±2.89
Weight at time of switch SU Treatment	10.7 ±5.6	12.2±9.3
Insulin dose — U/kg/day	0.68 ± 0.35	0.46 ±0.42
HbA1C	6.88 ± 1.75	6.9 ±1.7
Equivalent dose of glybenclamide (mg/kg/day)	0.92 ± 0.56	0.84 ± 0.69
Time transfer (day)	6.3 ± 4.3	3.4 ± 2.3

• NDM is rare, variously quoted as one case per 300,000

to 500,000 live births.

Objectives

To identify mutations of *KCNJ11* and *ABCC8* in patients with NDM; and to assess the results of oral sulfonylureas

11/11 patients successful switching from Insulin to oral Sulfonylureas. There are 2 patients have not required the drug at 52 months and 9 months of age. Their blood glucose and HbA1C are normal Duration of insulin treatment: 28,6±32 months (2-86, median: 10,5); HbA1C: 8,5 ±2,7%, glucose 3-17 mmol/l Duration of SU treatment: 30 ± 16 months (7-51), HbA1C: 6.05 ± 0.8 (%), blood glucose 4-10 mmol/l 9 patients are normal mental development: DQ 80-85%, 2 patients with DEND syndrome have improved of speech and movement

therapy replacing insulin injection.

Patients & Methods

• Descriptive study, case series study, collection of the symptoms and investigations, DNA was extracted from peripheral lymphocyte and analysed mutation using PCR and direct sequencing of *KCNJ11, ABCC8*. The patients include of 11 NDM patients with *ABCC8* or *KCNJ11* gene mutations are treated in National Hospital of Pediatrics

Results

• 11 probands from 11 unrelated families were diagnosed

Conclusions

Mutation analysis for neonatal diabetic mellitus helps to understand the pathology, diagnosis and to chose a suitable therapy. The major causes of NDM in Vietnam are mutations in

NDM and were identified mutation in above mentioned

genes.

Demographics :

Age of diagnosis was 52.9 ± 42 days (23 - 180 days)

Gender: 6 males, 5 females

Gestation age was 39.3 ± 1.3 weeks

BW: 2718.2± 451.2 grams (2000 – 3900 g)

ABCC8 and KCNJ11 and treatment was successful with SU.

References

Deborah J. G. Mackay, I. karen Temple (2010). Transient Neonatal Diabetes Mellitus type 1. American Journal of Medical Genetics.154C: 335-342. **Diva D De León, Charles A Stanley (2008).** Permanent neonatal diabetes. GeneReview.com

Flagan SE, Patch A-M, et al (2007). Mutation ATP-sensitive K+ channel genes .cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes 56: 1930-1937.

Lydia Aguilar- Bryan, Joseph Bryan (2008). Neonatal Diabetes Mellitus. Endocrine Review 29[3]: 265-291.

Stoy J, Edghill EL, Flanagan SE, et al (2007). *Insulin gene mutations as a cause of permanent neonatal diabetes*. Proc Natl Acad Sci USA.104: 15040–4.

Conflicts of interest: None declared; Email address: ngocctb@nhp.org.vn