Prepubertal and Pubertal Predictors of Semen Quality in a Prospective Cohort Study of Russian Young Men: Focus on Endocrine Disrupting

HARVARD T.H. CHAN SCHOOL OF PUBLIC HEALTH

Oleg Sergeyev^{a,b}, Lidia Mínguez-Alarcón^c, Russ Hauser^{c,d}, Paige L. Williams^e, Jane S. Burns^c Susan A. Korrick ^{c,f}, Yury Dikov ^b, Luidmila Smigulina ^b, Boris Revich ^g, Mary M. Lee ^h

^aDepartment of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia; ^bChapaevsk Medical Association, Chapaevsk, Samara Region, Russia; ^cDepartment of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA; ^dDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA; ^eDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, USA; ^fChanning Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; ^gInstitute of Economic Forecasting, Russian Academy of Science, Moscow, Russia, ^hDepartments of Pediatrics and Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.

Background

We have a unique longitudinal study following a cohort of boys with prepubertal assessment of exposures to endocrine disrupting chemicals (EDCs) and annual term follow-up of growth and puberty to evaluate semen quality

Objective

To describe semen quality and explore associations of prepubertal serum 2,3,7,8-tetrachlorodibenzodioxin (TCDD) levels and pubertal measures with semen parameters in a longitudinal cohort of Russian boys

Descriptive Statistics of Cohort

Table 1. Baseline and exposure characteristics
 of young Russian adults

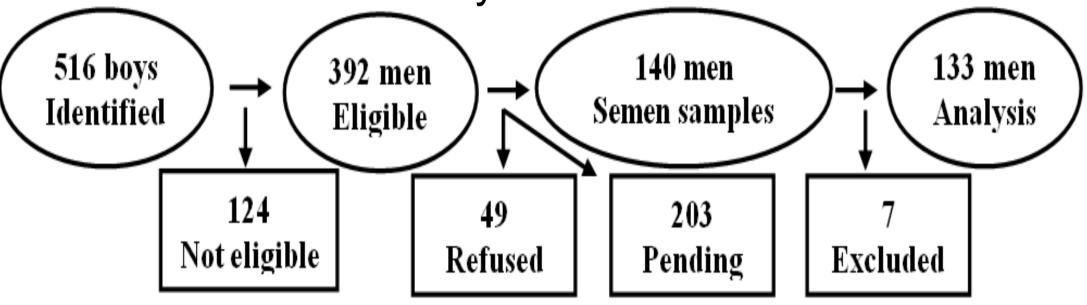
Decolino oborcotoriotico	Median (IQR) or N			
Baseline characteristics	(%)			
Age, years	18.3 (18.1, 18.7)			
Body Mass Index, kg/m ²	20.4 (18.8, 22.3)			
Men with 2 semen samples	123 (93)			
Abstinence time, hrs	70.5 (48.0, 144.0)			
Serum organochlorine concentrations (pg/g lipid)				
TCDD	2.9 (1.8, 4.2)			
PCDDs	157 (115, 200)			
PCDFs	44.5 (29.4, 63.3)			
Co-PCBs	188 (131, 273)			
ΣΡCΒs	235 (152, 352)			
Total TEQ	21.9 (16.8, 33.3)			
Prepubertal TCD	D and Semen			

Results

Semen Parameters

Table 2. Distribution of semen parameters among 133 young Russian adults, 257 samples

Semen parameters	Median (IQR)	WHO 2010 cutoffs	n (%) < WHO 2010
Semen volume, mL	2.4 (1.8, 3.5)	1.5	46 (18%)
Sperm concentration, mill/mL	51.3 (26.6, 78.8)	15	23 (9%)
Total sperm count, mill	127 (61.0, 222)	39	38 (15%)
Sperm motility, %	64.0 (57.0, 68.0)	40	10 (4%)
Total motile sperm count, mill	80.5 (35.8, 141)	-	_



Study Population

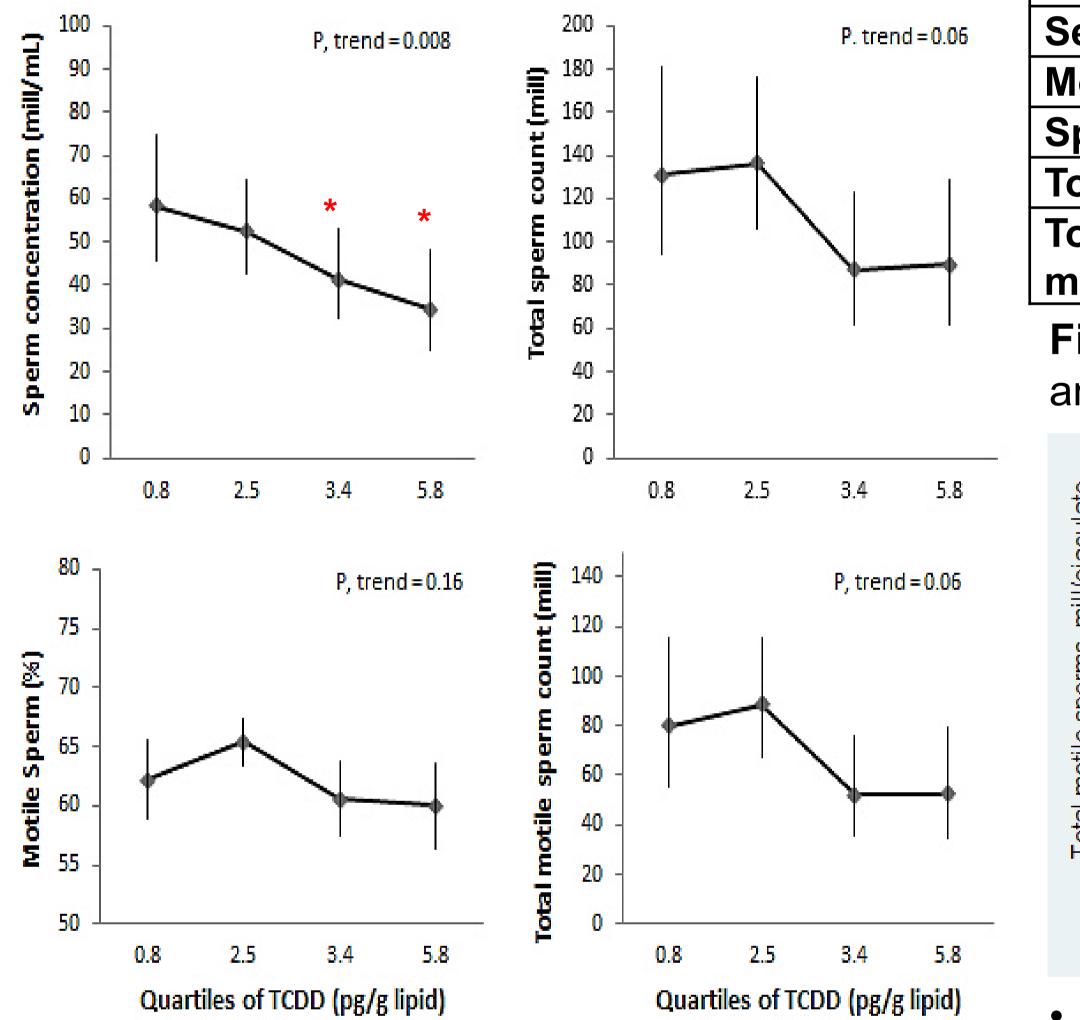

- 516 8-9-year-old boys were enrolled from 2003 to 2005 and underwent annual growth and sexual development assessments (Tanner staging and measurement of testicular volume) for ten years (total 4697 visits).
- At age 18 years, 392 subjects were eligible for semen sample collection.

Figure 1. Recruitment flow diagram for boys/men in Russian Children's Study

Footnote: Identified – using town records during 2003-2005; Not eligible – deceased, moved, location is unknown, refused to participate in follow-up; Pending – not responded yet, temporarily relocated, less than 18 years old, physically immature, postponed; Excluded – from analysis because no baseline serum EDCs measurements (n=4) and severe chronic disease (n=3)

Figure 2. Associations between prepubertal TCDD concentration and semen parameters among 133 young Russian adults

Testicular Volume and Semen

Table 3. Average testicular volume (ml) as predictor of log semen parameters among young Russian adults

Parameters	Estimate	95% CI	P- value
Semen volume, ml	0.020	(0.002 - 0.038)	0.029
Motility, %	0.009	(0.002 - 0.015)	0.008
Sperm count, mill/ml	0.064	(0.038 - 0.091)	<0.001
Total sperm, mill	0.084	(0.054 - 0.114)	<0.001
Total motile sperm, mill	0.092	(0.059 - 0.125)	<0.001

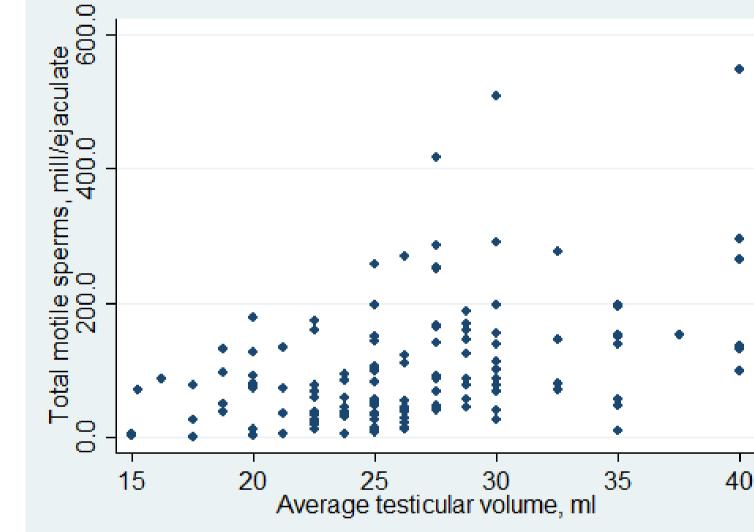
Figure 3. Association between average testicular volume and total motile sperm among young Russian adults

Methods

 The study was approved by the Human Studies Institutional Review Boards of the Chapaevsk Medical Association (Chapaevsk, Russia); HSPH and BWH (Boston, MA, USA), and UMass Medical School (Worcester, MA, USA).

Semen Collection and Analysis:

- At age 18, the subjects were asked to provide two semen samples one week apart (October 2012 – February 2015).
- 133 men contributed 257 semen samples.
- Semen evaluation (SE) includes measurement of volume, sperm concentration and motility (a+b+c categories) by one technician (LS) according to the NAFA-ESHRE manual^{1,2}.


Organochlorine Exposure Assessment:

 Baseline serum samples were analyzed at the NCEH, CDC, Atlanta, USA for TCDD and 57 other organochlorine compounds (described in Burns et al³).

Pubertal Measures at Semen Evaluation:

 Testicular volume was measured using the Australian orchidometer (which extends the Prader orchidometer to 35 mL)

* p<0.05 compared to Q1

• For every 1 ml increase in average TV, we observed a mean increase of 9.6% in total motile sperm count per ejaculate, p<0.001

Conclusion

In a prospective cohort of 18 year old Russian men:

- higher prepubertal serum TCDD levels are associated with lower semen parameters: sperm concentration, total sperm count, and total motile sperm count
- *higher* testicular volume is associated with *higher* semen parameters

In Summary

This is one of the first prospectively designed studies to follow a large cohort of boys annually from prepuberty until young adulthood, including collection of semen samples at 18 years

Statistical Analysis:

Prepubertal TCDD and Semen at 18 years

- Sperm concentration, total sperm count and total motile sperm count were log transformed
- Linear mixed models with random intercepts were used to examine the relation between quartiles of TCDD serum concentration with semen parameters
- Final models were adjusted for:
 - body mass index (BMI) (continuous)
 - season (autumn and winter vs. spring and summer)
 - abstinence time (<2days, 2-5 days, ≥5days)

Testicular Volume and Semen at 18 years

- Volume of left and right testicles was averaged
- Semen parameters were log10 transformed
- Linear univariate regression was used

- Consistent with the Seveso study, our results suggest that the prepubertal period is a sensitive window of exposure to dioxin for adult sperm quality⁴
- Collection of semen samples is ongoing with anticipated participation of 250 young men
- We are studying EDCs effects on sperm epigenetic programming among this Russian male cohort.

Grant Support US NIH Grants R-01 ES014370; P30ES000002; Russian Science Foundation Grant 14-45-00065

Acknowledgments We thank the Chapaevsk Local Government, staff of Chapaevsk Medical Association and Chapaevsk Central Hospital. We are grateful to the boys/young adults in Chapaevsk for their participation

References:

¹ KVIST, U. & BJORNDAHL, L. 2002. Manual on Basic Semen Analysis. ESHRE Monographs, Oxford: Oxford University Press. ² BJÖRNDAHL, L. et al. 2010. A Practical Guide to Basic Laboratory Andrology, Cambridge, UK: Cambridge University Press. ³ BURNS, J. S. et al. 2009. Predictors of serum dioxins and PCBs among peripubertal Russian boys. *Environ Health Perspect*, 117, 1593-1599. ⁴ MOCARELLI, P. et al. 2008. Dioxin exposure, from infancy through puberty, produces endocrine disruption and affects human semen quality. Environ Health Perspect, 116, 70-7.

olegsergeyev1@yandex.ru; rhauser@hshp.harvard.edu **Further Information:**

