

The etiological spectrum of congenital adrenal hyperplasia based on molecular genetic analyses

Jin-Ho Choi¹, Ja Hye Kim³, Eungu Kang¹, Ja Hyang Cho¹, Gu-Hwan Kim², Han-Wook Yoo¹

¹Department of Pediatrics, ²Medical Genetics Clinic and Laboratory, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, ³Department of Pediatrics, Hanyang University College of Medicine, Guri, Korea

Introduction

- Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders characterized by a defect in cortisol biosynthesis.
- The most common form of CAH is the 21-hydroxylase deficiency (21-OHD). However, the incidence and the etiologic spectrum of other forms of CAH were not reported in Korea.

Objectives

- To describes the etiological distribution of CAH
- To evaluate the clinical characteristics and age at first presentation of CAH in a single academic center

Methods

- This study included 189 patients with all forms of CAH.
- The diagnosis was confirmed by the clinical features, biochemical data, and molecular genetic analysis for the CYP21A2, StAR, CYP17A1, and POR genes.

Results

Frequencies of each form of congenital adrenal hyperplasia.

Fig. 1. Of a total of 189 patients, 138 patients (73%) from 128 families were 21-OHD (104 salt-losing, 33 simple-virilizing, and 1 non-classic forms), 43 (23%) from 41 unrelated families had *StAR* defect, six (3%) had 17-hydroxylase/17,20-lyase deficiency, and two (1%) had P450 oxidoreductase (POR) deficiency.

Clinical characteristics and molecular analysis of CYP21A2 in 138 patients with 21-OHD.

Fig. 2. Outcomes of patients with 21-OHD. 97 patients with salt-losing 21-OHD (97/104, 93.3%) were diagnosed in the neonatal period. Most girls of 21-OHD (75/76, 98.7%) presented with genital virilisation, whereas most boys (38/62, 61.3%) presented with salt-losing phenomenon within the first month of life. Four genetic female (46,XX) with simple virilizing form of 21-OHD were assigned as male because of delayed diagnosis.

Fig. 3. Mutation spectrum of CYP21A2 gene in patients with 21-OHD according to clinical phenothypes.

- 43 patients with congenital lipoid adrenal hyperplasia (CLAH) from 41 unrelated families
 - > 8 different mutations in the StAR gene from 41 unrelated families
 - c.772C>T (p.Q258*): The most common StAR mutation in Korea (87.8%) by founder effect

Fig. 4. Outcomes of patients with CLAH. Most patients (40/43, 93%) with StAR defect presented with adrenal crisis in the neonatal period, while 3 late-onset patients showed skin hyperpigmentation after age 2 years.

- Six patients with 17α-hydroxylase/17,20-lyase deficiency
 - > Hypertension and primary amenorrhea during adolescent period

	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
Age at diagnosis	14y 11mo	19y 2mo	15y	18y	42y	14y
Height SDS/weight SDS	-0.61/-0.16	-1.50/-2.57	3.08/1.37	0.85/2.60	1.85/1.95	2.00/1.88
BP, mmHg	180/100	171/115	170/100	140/90	208/150	150/90
Na/K, mEq/L	137/3.5	133/3.7	145/3.5	147/3.0	144/3.7	140/2.1
LH/FSH, mIU/mL	38.3/123	61.5/60.4	26.7/13.2	15.1/6.6	6.8/37.8	20/52
Estradiol, pg/mL	10.0	10.0	24	11	12	18
Testosterone, ng/mL	0.05	80.0	<0.1	<0.1	<0.1	ND
Progesterone, ng/mL (0.1-1.3)	10.7	2.4	6.7	7.0	16.5	9.9
ACTH, pg/mL (0-60)	162	510	211	189	344	34.6
Cortisol, µg/dL (5-25)	1.1	3.3	1.7	1.3	8.0	1.4
11-DOC ng/mL (0.03-0.33)	ND	ND	3.5	1.48	2.3	0.51
Renin, ng/mL/hr (0.68-1.36)	0.16	3.5	0.1	0.1	0.4	0.3
Aldosterone, pg/mL (70-300)	298	215	136	70	176	59.8
Karyotype	46,XY	46,XY	46,XX	46,XX	46,XY	46,XX
CYP17A1 mutation	p.H373L/	p.H373L/	p.H373L/	p.H373L/	p.H373L/	p.H373L
	p.H373L	p.W406L	p.Y329fs	p.Y329fs	p.Y329fs	/p.A174E

- Two girls with P450 oxidoreductase (POR) deficiency
 - > Adrenal insufficiency, ambiguous genitalia, and craniosynostosis

	Case 1	Case 2		
Age/Sex	7 months/Female	3 months/Female		
Skeletal features	Craniosynostosis, Radiohumeral synostosis	None		
Genitalia	Clitoromegaly	Partial fusion of labia majora		
Maternal virilization	Denied	Not assessed		
ACTH, pg/mL	290	415		
Cortisol, µg/dL	$9.3 \rightarrow 9.6$	13.4 → 26.2		
17-OHP, ng/dL	2240 → 3630	28 → 83		
DHEA-S, µg/dL (5-20)	9.9	43.0		
Testosterone, ng/dL	0.8	0.1		
Renin, ng/ml/hr (2.35-37)	1.4	6.1		
Karyotype	46,XX	46,XX		
POR gene	p.R457H/p.I444fs*449	p.R457H/p.R457H		

Conclusions

- The most common cause of CAH was 21-OHD. Interestingly, lipoid CAH is the second common because of the founder mutation (p.Q258X) in Korea.
- Nationwide surveillance is needed to estimate the incidence and precise distribution of diverse etiology of CAH, though newborn screening for 21-OHD is introduced.

Disclosure statement

The authors have nothing to disclose.

Poster presented at:

