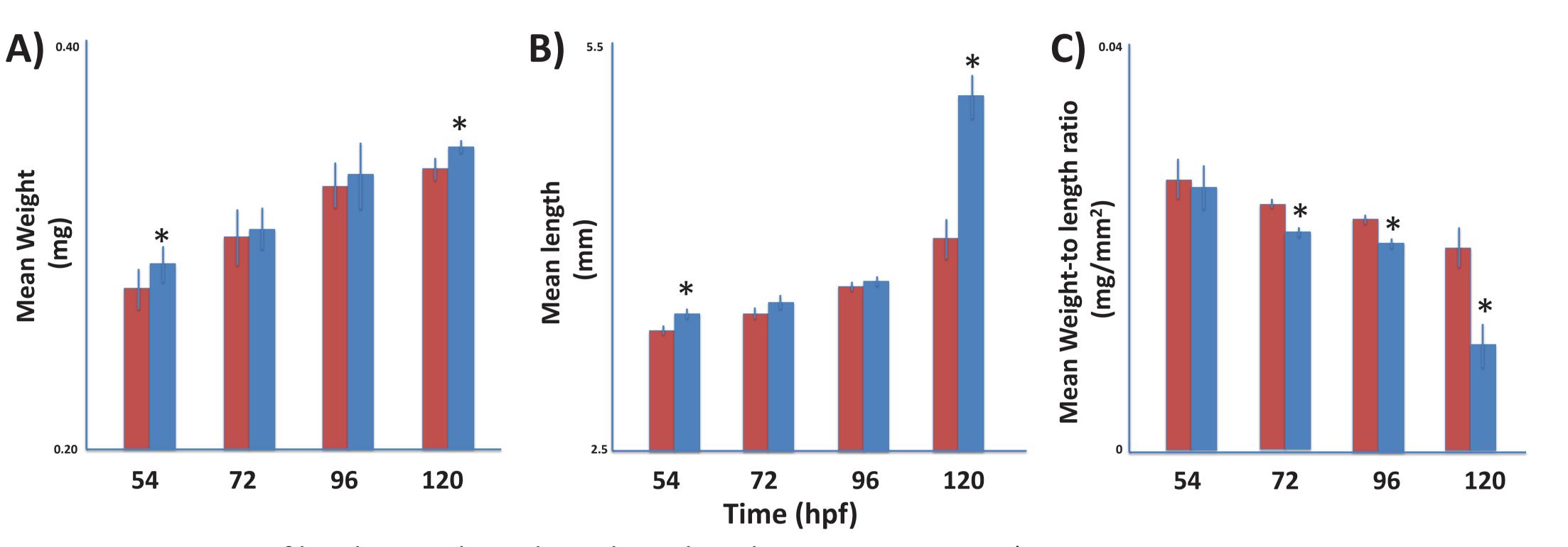


The University of Manchester

GRB10 Knockdown in Zebrafish is associated with decreased weight-to-length ratio without alterations in AKT and ERK activity: a model to study human growth regulation

Chiara De Leonibus¹, Jack Broadbent², Philip Murray¹, Joseph Whitehead², Adam Hurlstone², Holly Shiels², Peter Clayton¹, Adam Stevens¹

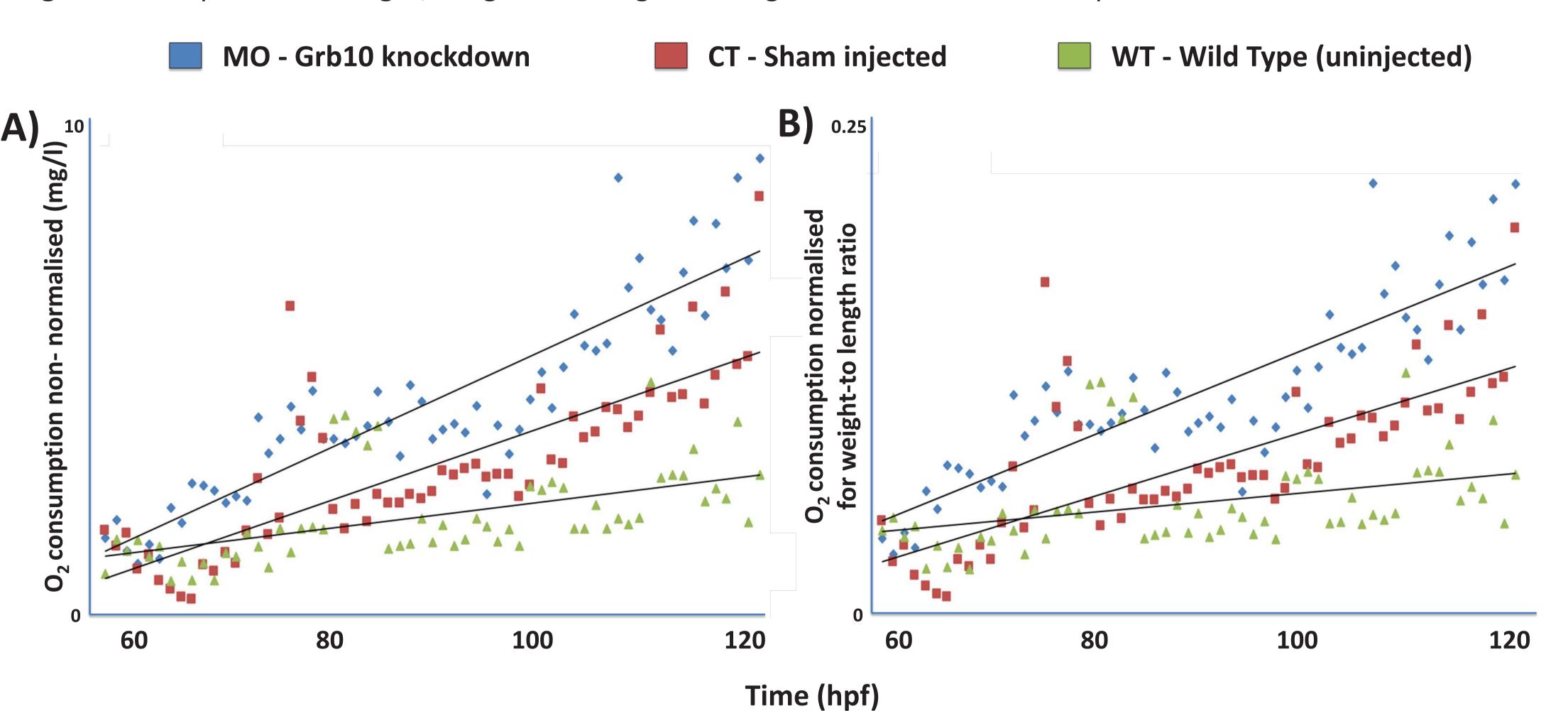
¹Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester and Manchester Academic Health Science Centre, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust. ²Faculty of Life Sciences, Manchester University of Manchester.


Background	Results	
polymorphisms within <i>GRB10</i> have	 CT groups at 54 and 120 hpf (p<0.01) (I After 72 hours weight-to-length ratio (p<0.05) (Figure 1C) 	Its and heights for the MO compared to the Figure 1A & 1B) by was significantly decreased in MO vs CT responds to an increase O_3 consumption in

- In humans GRB10 negatively regulates IGF-1 and GH signaling predominantly via the phosphorylation of PI3K/mTOR/AKT and MEK/ERK pathways
- We have previously shown that Grb10 knockdown in Zebrafish results in overgrowth with an increase in length and head size

To develop a model to study weight and weight-to-length ratio in *Zebrafish* and to examine the mechanisms through which *Grb10* knockdown mediates overgrowth

Aim


- the MO Zebrafish Grb10 knockdown compared to controls (n=58), $R^2 O_2$ consumption MO vs CT vs WT = 0.80 v 0.64 v 0.27 non-normalised (Figure 2A) & 0.74 v 0.55 v 0.13 weight-to-length ratio normalised (Figure 2B, p<0.05)
- Comparing Western-Blot in MO vs CT samples, indicated that global AKT and ERK phosphorylation were not affected by Grb10 knockdown (Data not shown)

Material and Methods

- Grb10 knockdown was obtained by injecting splice-blocking morpholino oligonucleotides (MO) into one-cell stage Zebrafish embryos. Comparisons were made to sham injected controls (CT) and wild type uninjected animals (WT)
- Weight-to-length ratio (mg/mm²) was assessed at 54, 72, 96 and 120 hours postfertilisation (hpf) (n=8). These developmental periods were chosen to model early through late childhood growth. Respirometry was performed to

Figure 1. Comparison of height, weight and weight-to-length ratio in MO vs CT. * = p<0.01

Figure 2. O₂ consumption in MO, CT and WT zebrafish.

- measure O_2 comsumption using a FireStingO2 fiber-optical oxygen meter (Pyroscience, Aachen, Germany)
- Chemical inhibition of the PI3K/mTOR/AKT (NVPBEZ235) and the MEK/ERK pathways (PD184532) was performed from 30 to 72hpf. Total and phosphorylated AKT and ERK were evaluated on Western-Blot to assess the level of phosphorylation of these molecules

¹Clayton P *et al* 2013 Eur J Endocrinol 169 (3):277-289

Conclusions

- Grb10 knockdown in the Zebrafish model increases length and weight while the ratio of weight-to-length decreases, associated with increased O_2 consumption
- Pathways other than PI3K/mTOR/AKT and MEK/ERK are responsible for the overgrowth of Grb10 knockout Zebrafish
- Grb10 knockdown in the Zebrafish generates a longer, leaner animal, a phenotype that is associated with increased O₂ consumption and provides a model to study the relationship between growth and metabolism.

