

54th Annual Meeting 1-3 October ESPE 2015 BARCELONA European Society for Paediatric Endocrinology

GAD ANTIBODIES NEGATIVE TYPE 1 DIABETES AND DRAVET SYNDROME

Sara Ciccone¹, Romana Marini¹, Lucia Fusco², Alessandra Terracciano³, Riccardo Schiaffini¹, Marco Cappa¹

¹Endocrinology and Diabetes Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy ²Neurology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy ³Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy

BACKGROUND

 An association between T1DM and idiopathic generalized epilepsy is reported. Some authors suggest an autoimmune mechanism mediated by antibodies to glutamic-acid-decarboxylase (GAD), that is an enzyme involved in the synthesis of the neurotransmitter GABA.

 Dravet syndrome (DS) is a rare, severe epilepsy disorder characterized by febrile hemiclonic seizures or generalized status epilepticus starting at 6 months of age. In classical DS, a delayed development and a motor impairment are often described. Mutation or deletions of SCN1A account for 85% of DS cases. SCN1a mutations alter sodium channel activity that can predispose the SNC to abnormal excitability.

We report the case of a 9-year-old boy with T1DM and DS.

CASE REPORT

 No familial history of epilepsy or diabetes. First-born at the 37th week from a normal pregnancy, with a normal adaptation at birth.

 At 8 months, he developed febrile seizures, then at 2.5 years he presented afebrile generalized tonic-clonic seizures. A DRAVET SYNDROME was clinically diagnosed, confirmed by a positive test for a SCN1A gene mutation (heterozygous c.560_563inv). Epilepsy has proved to be drug-resistant (valproate, gardenal, topiramate, levetiracetam and then stiripentol). A mild improvement of seizures was reported with stiripentol treatment.

• At the age of 7, the boy developed a **T1DM**.

Serum glucose 536 mg/dl, HbA1c 86 mmol/mol (n.v.20-38), venous pH 7,29, HCO3- 10.7 mmol/l, BE -17,1 mmol/l;

PHOSPHOTYROSINE ANTIBODIES + ANTI-GAD AND ANTI-INSULIN ANTIBODIES -(CONFIRMED AFTER 2 YEARS)

CONCLUSION

 A concordance between GAD-antibody titres and clinical manifestations of myoclonic encephalopathy was reported in some patients, in whom a pathogenetic role of GAD autoimmunity was suggested.

 In the presented case, we can hypothesize an autoimmune etiology but not GADantibodies mediated.

REFERENCES

- 1. Lenti C, Bognetti E, Bonfanti R, Bonifacio E, Meschi F. Myoclonic encephalopathy and diabetes mellitus in a boy. Dev Med Child Neurol. 1999 Jul;41(7):489-90.
- 2. Yun C, Xuefeng W. Association between seizures and diabetes mellitus: a comprehensive review of literature. Curr Diabetes Rev. 2013 Jul;9(4):350-4.
- 3. Verrotti A, Scaparrotta A, Olivieri C, Chiarelli F. Seizures and type 1 diabetes mellitus: current state of knowledge. Eur J Endocrinol. 2012 Dec;167(6):749-58
- 4. McKnight K, Jiang Y, Hart Y, Cavey A, Wroe S, Blank M, Shoenfeld Y, Vincent A, Palace J, Lang B. Serum antibodies in epilepsy and seizure-associated disorders. Neurology. 2005 Dec 13;65(11):1730-6.
- 5. Vincent A, Crino PB. Systemic and neurologic autoimmune disorders associated with seizures or epilepsy. Epilepsia. 2011 May;52 Suppl 3:12-7.

Saturday, 3 October

Diabetes - P3-721

