

Phenotype, Genotype and Short term Outcome in Congenital Hyperinsulinism(CHI)

Mudita Dhingra, Sudha Rao, Neha Dighe, Ruchi Parikh, Madhura Joshi, Sandhya Kondpalle, Aparna Limaye, Rajesh Joshi, Meena P Desai 10-5-RFC

Division of Pediatric Endocrinology, Bai Jerbai Wadia Hospital for Children, Mumbai, India

Introduction

Congenital hyperinsulinism (CHI) is the commonest cause of intractable hypoglycaemia in neonates and infants. Hyperinsulinemic hypoglycaemia occurs due to unregulated insulin secretion from β-cells of pancreas in relation to blood glucose levels*.

AIM

• To describe clinical profile, molecular characterization, response to therapy and short term outcome in CHI.

Materials and methods

- Records of 27(15 F) children diagnosed with hyperinsulinism in last 10 years were studied.
- Clinical , hormonal and mutation details were analyzed in DR (Diazoxide Responsive) and DU (Diazoxide Unresponsive) group.
- Syndromic and transient cases were excluded.

PATIENT CHARACTERISTICS (n=27)

MOLECULAR CHARACTERIZATION* (ABCC8 & KCNJ11)

Females (n) (%)	15 (55)
Mean Gestational age ,weeks	37.3±0.99(36-40)
Mean Birth weight ,grams	3240±695 (1500-4600)
Median Age of onset ,days	3 (1- 240)
(%) (n), Diagnosed in neonatal period	20(74)
Large for gestational age,(n) (%)	9(33.3)
Consanguinity (%)	8(29.6)
Mean of maximum GDR(mg/kg/min)	12.6±4.81
Mean Blood glucose at diagnosis (mg/dl)	30±11.5
Mean Serum Insulin at diagnosis (mIU/ml) (range)	26.57 (3.6 - 300)
TREATMENT RESPONSE	

- 9 in ABCC8 gene, 1 in KCNJ11 gene
- 2 novel mutations one in each ABCC8(p.V1361L) and KCNJ11(p.C142Y) gene.
- 1- de novo mutation
- 2 mutation positive children were infant of diabetic mother
- **3** mutations were paternally inherited
- 3 AD inheritance , all in DR group
- 6 were heterozygous, 4 were homozygous mutations
- 2 children had atypical features {one with MPHD(Empty sella syndrome) and one with dystonia and late onset hyperinsulinism)} -

but were mutation negative

CHILDREN ON LONG ACTING OCREOTIDE (LAR)

- Mean duration of follow up 12.25 months(6-24)
- Mean age at starting LAR 8.38 months (1-33)
- Mean age at last follow up 18.37 months(6-47)
- Mean dose of LAR at last follow up 21.52 ± 5.2 ug/kg/day
- Daily Octreotide stopped on 2nd dose of LAR
- Mean Height SDS at last follow up--0.9±1.92,
- Although 2 children had low IGF 1 level on follow up, all had normal growth velocity

Side effects

- Gall bladder pathology (5/8). 3 had stones, 2 had sludge On Ursodeoxycholic acid, 40 % reduction in size of gallstones seen on follow up
- No significant differences in dose of LAR in patients with (23.40) ±4.15ug/kg/day) or without (18.40 ± 7.14ug/kg/day) GB pathology(p=0.35)
- **Deranged liver functions with severe bacterial sepsis(1/8)**

OUTCOME

33.3% (9/27) had normal milestones 59.2% (16/27) had delayed milestones with/without neurosensory affection 7.4% (2/27) expired

CONCLUSION

ABCC8 mutation was the commonest mutation found in our cohort.

40% of our children did not respond to Diazoxide of which 36% underwent near total pancreatectomy.

In all Diazoxide Unresponsive patients LAR was useful to maintain euglycemia.

Long term studies are required to emphasize the safety profile of LAR.

Reference

*Arya VB, Senniappan S, Guemes M, Hussain K. Neonatal hypoglycemia. Indian J Pediatr. 2014; 81:58-65.

Conflict of interest : None

DOI: 10.3252/pso.eu.55ESPE.2016

