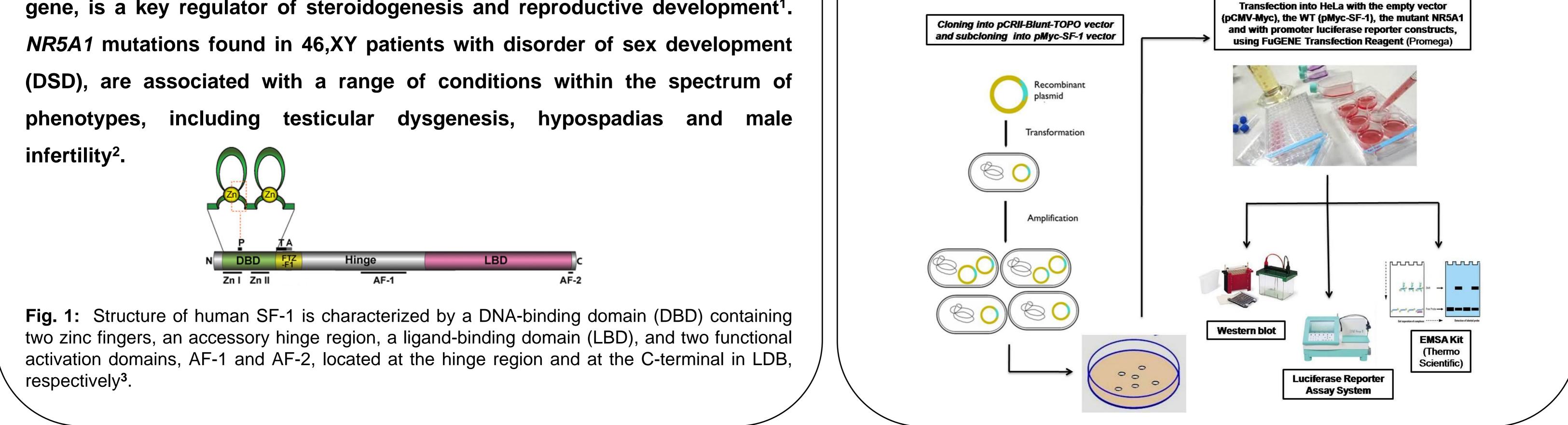


Mutations at the SF-1 ligand-binding domain can lead to different effects on DNA binding: report of two novel mutations



¹Center for Molecular Biology and Genetic Engineering, State University of Campinas, SP, Brazil; ²Department of Paediatric and Adolescent Medicine, and Division of Experimental Paediatric Endocrinology and Diabetes, University of Luebeck, Germany; ³Interdisciplinary Group for the Study of Sex Determination and Differentiation, State University of Campinas, SP, Brazil ⁴ Department of Pediatrics, Faculty of Medical Sciences, State University of Campinas, SP, Brazil ⁵Department of Medical Genetics, Faculty of Medical Sciences, State University of Campinas, SP, Brazil e-mail: helenafabbri@gmail.com

Introduction: Steroidogenic factor-1 (SF-1), encoded by NR5A1

gene, is a key regulator of steroidogenesis and reproductive development¹.

Results: Two mutations (p.C247* and p.K396Rfs*34), identified in the SF-1 ligand domain (LBD) have been analyzed to estimate their functional

influence on SF-1 transcriptional activity. Luciferase reporter gene expression was reduced for both p.C247* and p.K396Rfs*34 when tested on AHM and

STAR promoters. Whereas the transactivation activity for p.K396Rfs*34 was completely null, p.C247* retained a very low activity. Western blot showed

that normal and mutant proteins were expressed in similar amounts. EMSA was also performed to analyze if those mutations would disturb SF-1 DNA binding ability. Results showed that the mutation p.K396Rfs*34 abolished the ability to bind DNA, whereas the formation of a protein-DNA complex was still observed for p.C247^{*}. Clinical data of the patients are detailed in Table 1.

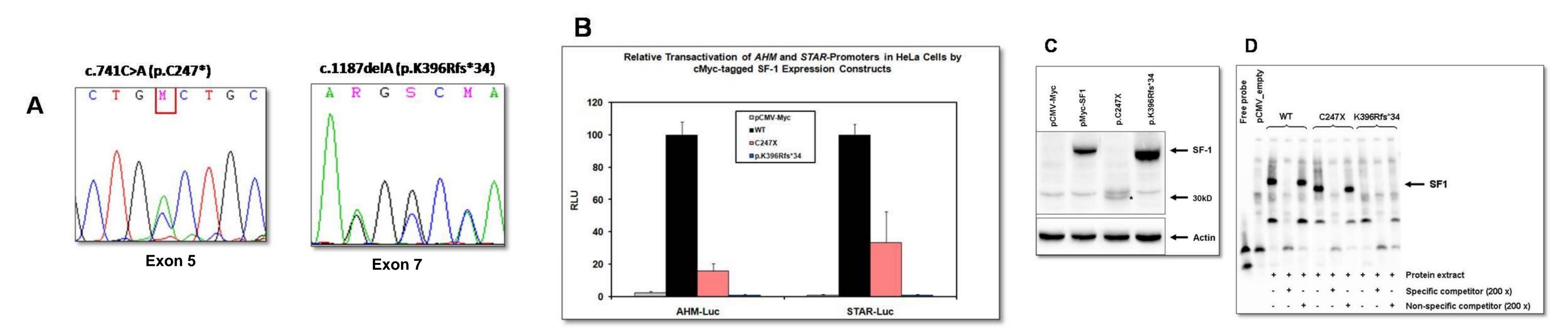


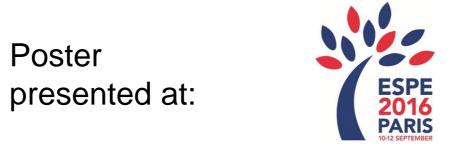
Fig. 2: A) Part of electropherogram sequences showing the mutations c.741C>A in exon 5 and c.1187delA within exon 7. B) Transactivation of AHM and STAR Promoters in HeLa cells, showing no activity of the mutant p.K396Rfs*34 and low activity of p.C247*. C) Expression levels of SF-1 protein in the Western Blot. D) EMSA assays revealed that only the SF-1 mutant p.C247* was able to bind to an SF-1 specific DNA sequence, whereas the p.K396Rfs*34, lost this ability.

Table 1: Clinical data of the patients with *NR5A1* mutations.

<i>NR5A1</i> gene mutation	Karyotype/ Assigned sex	PHENOTYPE							
		Age at first visit	Urethral opening	Gonadal location (R/L)	Basal gonadotrophins	Basal testosteone	Testosterone response to hCG testing	Gonadal histology (R/L)	Family
p.C247*	46,XY/Female to male	20 years	Penoscrotal	IC / LSF	Elevated FSH, normal-high LH	Normal	NP	N/A	NP
p.K396Rfs*34	46,XY/ Male	7.8 years	Perineal	LSF / LSF	Prepubertal	Prepubertal	No response	Dysgenetic testes bilaterally	M=N

DISCLOSURE STATEMENT: The authors have nothing to disclose.

REFERENCES: ¹Luo X, Ikeda Y, Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 1994;77(4):481–90.² Pedace L, Laino L, Preziosi N, Valentini MS, Scommegna S, et al. Longitudinal hormonal evaluation in a patient with disorder of sexual development, 46,XY karyotype and one NR5A1 mutation. Am. J. Med. Genet. Part A 2014;164(August):2938–2946 .³Hoivik EA, Lewis AE, Aumo L, Bakke M. Molecular aspects of steroidogenic factor 1 (SF-1). Mol. Cell. Endocrinol. 2010;315(1-2):27–39.4 Camats N, Pandey a V, Fernández-Cancio M, Andaluz P, et al.. Ten novel mutations in the NR5A1 gene cause disordered sex development in 46,XY and ovarian insufficiency in 46,XX individuals. J. Clin. Endocrinol. Metab. 2012;97(7):E1294–306.



CONCLUSION: It is already known that, mutations at

SF-1 LBD, may result in variable effects depending on their location and alterations in the ligand specificity/recognition⁴. This was also observed here, once both mutations localized in the LBD had completely different effects on DNA binding. However, both patients present partial gonadal dysgenesis, suggesting that the genotype-phenotype correlation, especially for mutations within the LBD, remains elusive. SF-1 function/regulation is very complex and must be increasingly studied, mainly because the number of different phenotypes correlated with mutations on this gene has been constantly increased.

