

Thyroid cancer is the most frequent secondary solid tumour following allogeneic stem cell transplantation in childhood – a single centre experience

¹M. Snajderova, ²P. Keslova, ²P. Sedlacek^{, 2}R. Formankova, ²P. Riha and ²J. Stary

¹Department of Paediatrics, ²Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Nothing to disclose

Introduction

 Allogeneic haematopoietic stem cell transplantation (HSCT) is a curative approach for a variety of malignant or nonmalignant disorders.

Methods

 All patients were screened yearly for: serum fT4, TSH, thyroid antibodies, and thyroid function.

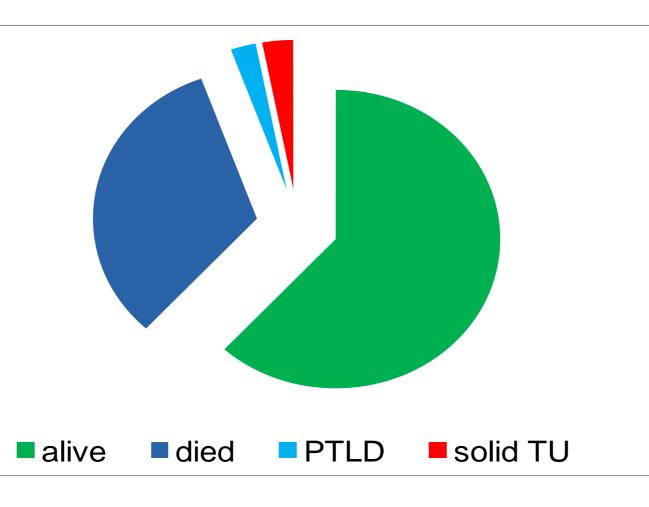
Thyroid ultrasound was performed with

Thyroid carcinoma is the most frequent secondary solid tumour following allogeneic stem cell transplatation

FN MOTOL

 With improved outcomes, increasing attention has been drawn to late complications in long-term survivors.

 The development of secondary malignancy is recognized as one of the most serious late complications.


The incidence is 2 - 8 x higher than expected in general adult population:
2 - 6% at 10 years and 6 - 15% at 15 years after HSCT.

Objective

Aim of the study was to evaluate occurrence of secondary solid tumours at HSCT Unit, University Hospital Prague - Motol, Czech Republic. a Toshiba Nemio 17 ultrasound machine, transducer 7.5 MHz *in 79/329 (24%) disease free survivors at least 1 year after HSCT.*

Results

Secondary malignancy: n=29/499 (5.8%) subjects

In all 8 patients with thyroid cancer:

papillary thyroid carcinoma (PTC) micronodular (T1 or T2 stage)

PTC diagnosed after HSCT	11.3 years (range 5.4-17.0)	
HSCT for malignant diagnosis in PTC	n = 7/8	
TBI-based regime in PTC	n=7/8	
Therapy of PTC	thyroidectomy and replacement thyroid hormone in all 2 with additional ¹³¹ I treatment	
Previous therapy for thyreopathy	n=3 AITD n=1 hypothyroidism	

Characteristics of cohort

Post-transplant lymphoproliferative disease (PTLD) n=13/499 (2.6%) patients,

HSCT performed within the period 1989 – 2014

Inclusion criteria:

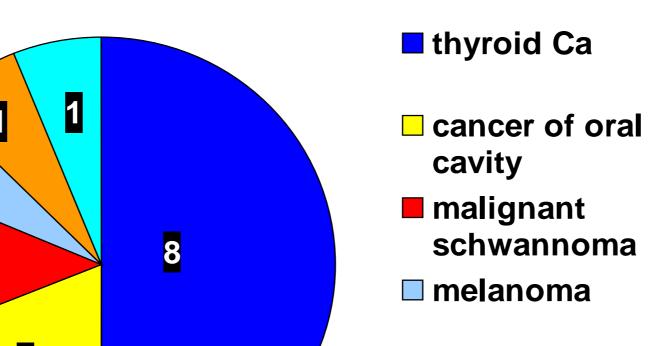
HSCT in childhood or in adolescence

Patients	n	499
Female/Male	n	164/335
Malignant diagnosis	n	352
Survivors at the time of study	n	329/499 (66%)
TBI 10-14 Gy	n	170 (34%)
Age at HSCT median (range)	years	9.1 (0.2 – 20.5)
Follow-up after	years	

the early secondary malignancy after HSCT (median 0.3; range 0 – 1.8 yrs)

Secondary solid tumour: n= 16/499

(3.2%) patients (no patient with Fanconi anaemia)


Age at diagnosis of secondary solid tumour:

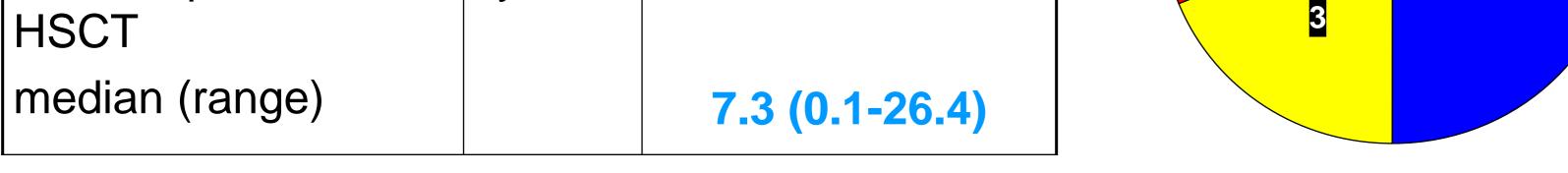
median **21.9** (11.8 - 32.6) years

```
Time after HSCT:
```

2

median **11.4** (5.4–17.8) years

breast cancer


mesothelioma

peritoneal

Conclusions

• Risk of secondary cancers after HSCT is increasing within the time.

It may be result of the chemotherapy and radiotherapy before HSCT, and chemotherapy and radiation conditioning used for HSCT, immune dysregulation, immunosuppression, GvHD after HSCT or congenital predisposition.
 Long-life late effects monitoring as an important part of post-transplant care is

TBI – total body irradiation

Transplant characteristics

 Conditioning

 TBI: total body

 chemo: chemot

TBI: total body irradiation based

chemo: chemotherapy only

TBI chemo

15/16 with secondary solid tumour: total body irradiation 12-14.4 Gy as a part of conditioning regime

8/16 (50%) patients: thyroid carcinoma

necessary.

- Regular sonographic evaluation of thyroid gland and neck is very important especially more than 5 years after HSCT and namely in all patients after TBI.
- Regular monitoring of thyroid function, laboratory parameters and ultrasound is highly recommended.

• Supported by MH CZ for conceptual development 00064203 University Hospital Motol.

