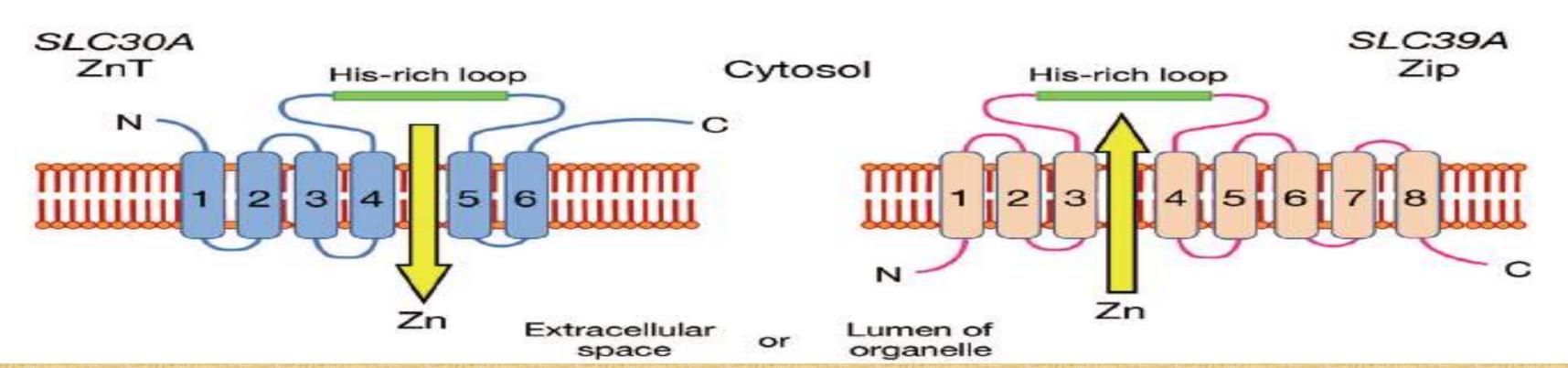
Identification of zinc transporter ZnT8 in thyroid tissues from children and adolescents with thyroid nodular goiter



Artur Bossowski¹, Joanna Reszeć², Dariusz Polnik³, Marta Gąsowska⁴, Wiesława Niklińska⁴.

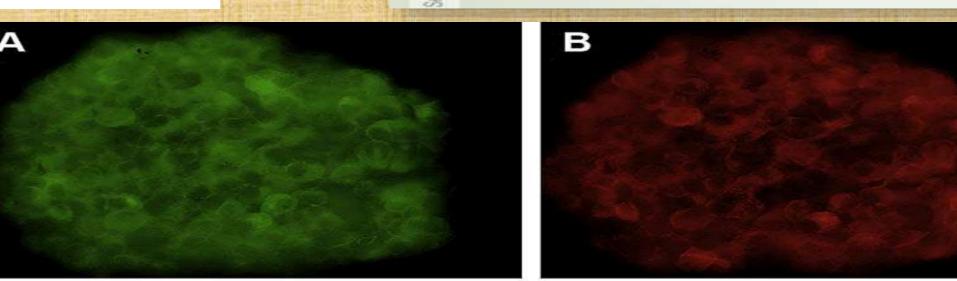
¹ Department of Pediatrics, Endocrinology and Diabetes with a Cardiology Unit, Medical University in Bialystok, Poland, ²Department of Medical Patomorphology. Medical University in Bialystok, Poland ³ Department of Children's Surgery and Transplantology, Children's Memorial Health Institute, Warsaw, Poland, ⁴Department of Histology and Embryology, Medical University in Bialystok, Poland

Objectives

Zinc transporter - ZnT8 -function and localization

Histidine rich domain

Alegania


Alegania

Direction of Zn2+ transport

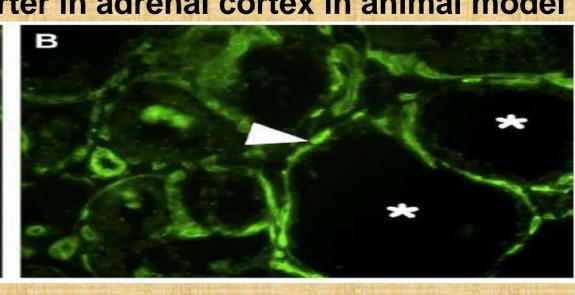
Direction of Zn2+ transport

- * **Zn homeostasis** is regulated by ZnT (SLC30A gene family) and Zip (SLC39A gene family) zinc transporters.
- * Zinc transporter 8 is localized in insulin containing secretory granule membrane and transports zinc from the cytosol into the vesicles. ZnT8 conteins six transmembrane domains and a histidine-rich loop between transmembrane domains 4 & 5, which is the putative zinc binding domain.
- * Human SLC30A8 gene is located to chromosome 8 at the position q24.11 which contains 8 exons and encoding a 369 amino acid ZnT8 protein.
- * Zn is important for the generation of proinflammatory cytokines: IL-6, TNF-α after LPS stimulations and development of T cells.
- * **Zinc deficiency** induces thymic atrophy, lymphopenia, supression of cytolitic T cell responses & NK activity.
- * **Zinc protects** pancreatic B-cells from cytokine-induced destruction, which is observed in patients with DT1 & DT2.

Kawasaki E . Endocrine Journal 2012, 59 (7), 531-537

Localization of ZnT8 transporter in a pancreatic β-cells

B


Insulin (+proinsulin)

Insulin secretory granule

Secretory distribution of islet autoantigens

Localization of ZnT8 transporter in adrenal cortex in animal model

Murgia C et al. Nutrition, Metab. & Cardiovascular Dis (2009) 19, 431-439

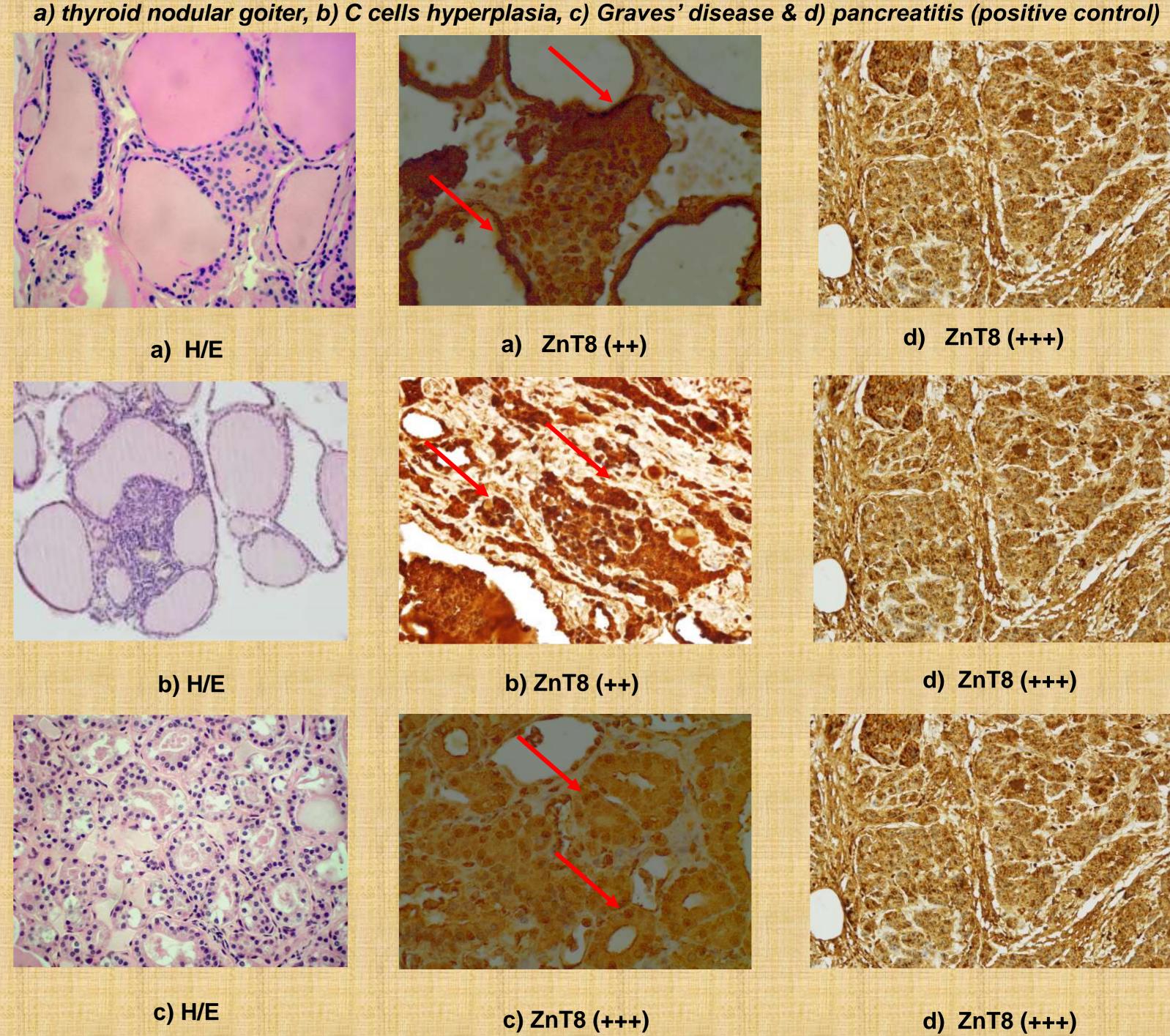
Immunolocalization of ZnT8 transpoter using anti-ZnT8 antibodies (a, b) in epithelium of thyroid follicular cells in animal model.

Material and Methods

We studied the expression of ZnT8 transporter in thyroid tissues from patients with immune and non-immune thyroid diseases. The study was performed in thyroid tissues after thyroidectomy from patients with thyroid nodular goiter (n=17, mean age 17.8 years ± 4) and cases with Graves' disease (n=20, mean age15.6 years ± 2.8).

	Graves' disease	TNG	*p
Weight(kg)	56±5.28	58.2±7.8	NS
Height (cm)	158.6±4.3	156±8	NS
fT4 (ng/dl)	1.8±0.63	1.2±0.46	p<0.01
fT3 (ng/dl)	5.08±0.5	3.2±0.38	p<0.01
TSH (μU/ml)	0.87±2.37	3.04±0.72	p<0.01
TRAb (U/I)	12.5±0.31	0.4±0.22	p<0.0001
anti-TGAb (IU/mL)	620.98±240.34	98.6±40.6	p<0.001
anti-TPOAb (IU/mL)	482.2±62.43	56±32.3	p<0.01
treatment	methimazole	L-thyroxine	

Method: The ZnT8 expression protein was evaluated using immunohistochemistry. The specimens were paraffin embedded tissues, derived from the pediatric patients, who had thyroid nodular goiter or GD. The antibody against ZnT8 was goat polyclonal antibody (Santa Cruz Biotechnology USA; sc-98243). The antigen was retrieval was done using high pH (PTLink DAKO) and antibody was incubated in 4°C overnight in 1:50 dilution. The patients with pancreatitis were as a positive controls.


The intensity and the proportion of stained cells were determined by examining the entire slide and section as:

- + (low staining intensity in less than 10% cells in the section);
- ++ (moderate staining intensity in 10-40% cells in the section);
- +++ (high and diffuse staining intensity in more than 50% cells in the section).

Results

Identification of ZnT8 transporter in thyroid tissues by immunohistochemistry in patients with:

a) thyroid podular goiter, b) C cells hyperplasia, c) Graves' disease & d) pancreatitis (positive control

Conclusions

- 1. Expression of ZnT8 transporter was identified in the thyroid tissues from paediatric patients with Graves' disease and nontoxic nodular goiter.
- 2. ZnT8 transporter expression was found both in thyroid follicular cells and C cells.
- 3. Predominant expression of ZnT8 in immune than in non-immune thyroid disorders may suggest potential role of ZnT8 as a new thyroid autoanitgen but it requires further study on a larger cohort.

