

Neonatal diabetes associated with transaminitis in a growth retarded infant

K B Parbhoo, F Moosa. K Thandrayen, C Hajinicolaou Chris Hani Baragwanath Hospital Academic Hospital and Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of Witawtersrand, Johannesburg, South Africa

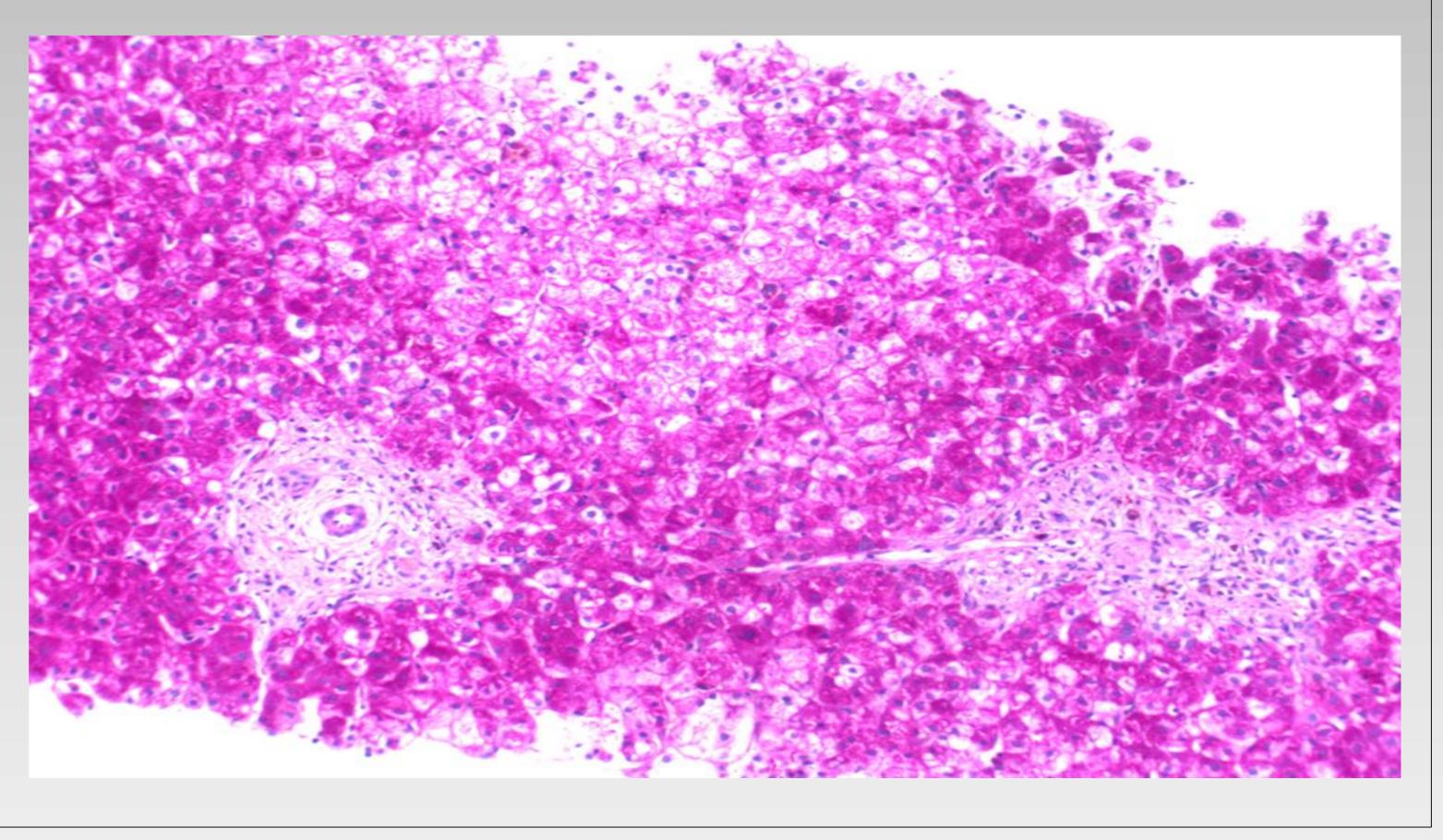
BACKGROUND

 Severe growth retardation in an infant born prematurely was associated with deranged liver functions evident at

CASE DESCRIPTION

- An infant weighing 1.365 kg and gestational age of 34 weeks was delivered by Caesarean section for foetal distress. No dysmorphic features were found.
- Jaundice was noticed at birth with pale stools initially.

birth.


- Hyperglycaemia associated with failure to thrive complicated the neonatal course.
- As cholangiopathy was suspected a liver biopsy was performed to rule out obstructive, infective or metabolic causes.
- The finding of glycogen hepatopathy was unexpected.
- Elevated blood glucose levels were initially attributed to sepsis and managed with the intermittent administration of insulin; persistence of hyperglycaemia (>10 mmol/l) was subsequently managed with insulin infusion.
- Wide fluctuations of the glucose including hypoglycaemia were noted.
- Due to poor subcutaneous tissue, continuous intravenous insulin (0.04 to 0.06 units/kg/day) was administered until the infant gained weight.
- The patient failed to respond to a trial of oral glibencamide (1).
- A normal pancreas, gall bladder and kidney were seen on abdominal ultrasound.
- Although there was non visualization of the hepatobiliary drainage on hepato-IDA scintigraphy, the stools colour improved.

RESULTS

Table : Biochemical and serological investigations			
	Birth (day 1)	7 months	16 months
Total Bilirubin (normal reference values)	48	19	3
Conjugated Bilirubin (0-20 umol /L)	24	17	<2
Alanine Transaminase (1-25U/L)	102	282	60
Aspartate Transaminase (0-51 U/L)	228	218	51
Alkaline Phosphatase (75-316 U/L)	142	1503	362
Gamma-glutamyl transferase (12-122 U/L)	1078	3872	49
Insulin (3.0-25.0 mU/I)	<0.5		
C Peptide	0.5		
GAD Antibodies	Negative		
Alpha-1 antitrypsin (1.01-3.0 g/L)	1.41		
Lactate (08-2.2 mmol/L)	1.0		
Toxoplasma IgG & IgM	Negative		
Rubella IgM	Negative		

Figure: Light microscopy of the liver

- Hepatocytes showing cytoplasmic pallor and distention.
- On PAS stain, there is glycogen accumulation within hepatocytes.
- No bile duct inflammatory lesions seen.

- Persistent hyperglycaemia in premature infants should lead one to suspect neonatal diabetes (2).
- Delivery of insulin is challenging in premature infants with wasting.
- The occurrence of glycogenopathy in neonates is unusual and was probably related to wide fluctuations in the serum glucose and deposition of glycogen mediated by insulin
- Improved regulation of blood glucose with technical advances such as continuous subcutaneous insulin infusion may prevent the occurrence of glycogen hepatopathy.
- Deranged liver functions is unusual except in rare genetic syndromes (which were not evident).
- A combination of hepatocellular damage and oxidative stress (in utero) were possible explanations for the increased GGT noted at birth (3).
- Raised GGT levels have been reported with insulin resistance (4,5) but not in neonatal diabetes.
- Multiple pathophysiological mechanisms probably accounted for raised GGT levels.

DISCLOSURE STATEMENT: No conflict of interest to declare

 Carmody et al: Sulfonylurea treatment before genetic testing in neonatal diabetes: pros & cons.JCEM 2014; 99(12): E2709-E2714

2. Ogilvy-Stuart et al: Management of hyperglycaemia in the preterm infant ;Arch Dis Child Fetal Neonatal Ed 2010; 95: F126-F131

3. Preidis GA, et al : The Undernourished Neonatal Mouse Metabolome Reveals Evidence of Liver and Biliary Dysfuncttion, Inflammation, and Oxidative Stress 2014; J

Nutr; 144 (3): 273-281

4. Lee SY et al : Elevated serum gamma-glutamyltransferase is a strong marker of insulin resistance in obese children; Int J Endocrinol Epub Mar2013. 12 doi:10.1155/2013/578693
5. Kunutsor SK.: Gamma-glutamyl transferase –friend or foe? Liver Epub Aug 2016. doi: 10.111/liv.13221

