

Haplo-insufficiency for LHX4 alone does not result in hypopituitarism.

Malathimala Kurre¹, Evelien Gevers^{1,2} ¹Dept of Paed Endocrinology, Royal London Hospital, Barts Health NHS Trust

Background

Two LIM homeodomain transcription factors, Lhx3 and Lhx4, are

Family history

Asian Mother healthy, no miscrriages. Normal chromosome 1.

critical in the development of the nervous system and pituitary gland in mice. *Lhx4* is expressed from E9.5 with peak expression between E10.5-E12.5, followed by a lower level until approximately E15.5. Recent work shows that *Lhx4* is necessary for efficient pituitary progenitor cell proliferation and restriction of p21 expression.¹ *Lhx4* null mice die shortly after birth and have pituitary hypoplasia. A homozygous *LHX4* mutation was found in a child with congenital hypopituitarism with ectopic posterior pituitary and neonatal death.² Heterozygous *LHX4* variants, but not deletions, have been described previously and are linked to hypopituitarism but have variable penetrance.

- Asian Father: Type 2 DM since age 30. No genetic test result.
- Not consanguineous. Brother and sister healthy
- 2 cousins: syndromic, abnormal kidneys, one cousin died at 8 months

Physical examination and Growth

Index Case

Baby girl, term, birth weight 3.1kg, no hypoglyc/jaundice
Neonatal pneunomia, gastroesophageal reflux
Severe feeding difficulties and food aversion
Failure to gain weight

Endocrine investigations (age 10.1) FT4 11.2 pmol/L (9-19) TSH 1.34 mU/L (0.5-6) Cortisol random 163 nmol/L FSH 4.3, LH 2.3 U/L Prolactin 167 nmol/L IGF1 613 ng/mL (62-504) Plasma osmol 288 MRI brain Normal pituitary, brain structures and vertebrae Fast progression through puberty

Discussion

- The index case is hemizygous for LHX4
- It is currently not known whether this is a de novo deletion

NG feeding from 1.5 – 4.5 yrs of age

Mild speech delay and mild developmental delay

Mild constipation from 8-9 years of age

Behavioural problems and night time incontinence

Genetic analysis with CGH (age 9 yrs)

Microdeletion in chromosome 1 including LHX4
 1q25.2q25.3 (179,329,152-181,516,624)x1 (2.2MB)

She had a fast progression through puberty and may have a small final height, but does not curently have hypopituitarism Redundancy or rescue by other transcription factors may be responsible for the absence of a pituitary phenotype in *LHX4*

dosage reduction.

Heterozygous *LHX4* mutations previously described in hypopituitarism may be part of a digenic or oligogenic cause of disease or act in a dominant negative fashion.

References

1Grucins P et al, *Molecular Endocrinology* 29: 597–612, 2015 2Gregory LC et al, J Clin Endo and Metab 2015;100:2158-64

