

Radiologically Confirmed Fractures University of Glasgow In A Scottish Nationwide Contemporary Cohort Of Boys

With Duchenne Muscular Dystrophy

S Joseph ^{1, 2}, M Di Marco ³, I Abu-Arafeh ⁴, A Baxter ⁵, N Cordeiro ⁶, L McLellan ⁷, K McWilliam ⁵, K Naismith ⁸, E Stephen ⁹, I Horrocks², SF Ahmed¹, SC Wong¹

Developmental Endocrinology Research Group, Royal Hospital for Children, Glasgow UK¹, Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow UK², Scottish Muscle Network ³, Forth Valley Royal Hospital, Stirling UK ⁴, Department of Paediatric Neurology, Royal Hospital for Sick Children, Edinburgh UK ⁵, Crosshouse Hospital, Ayrshire ⁶, Raigmore Hospital, Inverness, UK⁷, Ninewells Hospital, Dundee UK⁸, Royal Aberdeen Children's Hospital, Aberdeen, UK⁹

Background

There is an increasing concern regarding fragility fractures in boys with DMD but studies of fractures in DMD using radiologically confirmed fractures in sufficiently large cohorts are limited.

Objectives

To determine the frequency of fractures in a contemporary cohort of 91 boys with DMD managed in Scotland.

Methods

Results continued

Fractures were classified into the vertebral fracture (VF) and non-VF in a retrospective study of all boys currently managed in Scotland, United Kingdom. The probability of fractures was determined by Kaplan–Meier plot.

Results	
	Median (Range) or N (%)
Age (years)	11.2(2.3,18.9)
Height SDS	-1.4 (-5.3, 1.4)
Weight SDS	0.0 (-5.0, 3.3)
BMI SDS	1.5 (-0.4,3.5)
Ambulant: Non-Ambulant Cohort	46/91(50.5): 45/91(49.5)
Age at Loss of Ambulation (years)	10.4 (7.1,15.3)
Length of Non-Ambulation State (years)	2.92 (0.2,9.0)
GC Treated: GC Naïve Cohort	76/91 (83.5): 15/91(16.5)
GC Start Age	5.5 (2.9,9.9)
GC Therapy Length (years)	5.1 (0.4,11.0)
Current GC: Previous GC cohort	59/91 (64.8): 17/91 (18.7)

Table 1: Clinical Characteristic

Figure 4. Probability of all fracture vs. age

- 47/91(52%) No Fracture
- 36/91(40%) Non-VF Fracture
- 7/91(8%) Vertebral fracture
- 1/91(1%) Non-VF & Vertebral Fracture

Figure 1: Fracture Prevalence

6/43 (14%) Humerus 3/43 (7%) Clavicle **3/43 (7%)** Fibula 2/43 (5%) Radius/ulna **3/43 (7%)** Other

Figure 2: Fracture Sites

Figure 5. VF and Non-VF probability vs. age

0.2 GC length (Yrs) 0.0 10

Figure 6.VF and Non-VF Probability vs. GC duration

Conclusion

In our cohort of boys with DMD, approximately 50% of the cohort have sustained at least one fracture.

Painful vertebral fracture was observed in approximately 9% of our cohort.

Figure 3: Fracture Mechanism

Disclosure Statements: The authors have nothing to disclose

CHIEF **S**CIENTIST **O**FFICE

Muscular **Dystrophy Uk** Fighting muscle-wasting conditions

