Spinal and forearm bone mineralization in adolescents with Klinefelter syndrome.

De Schepper J¹, Louis O², Vanbesien J¹, Verheyden S¹, Anckaert E³ and Gies I¹¹Department of Pediatrics, ²Department of Radiology, ³Department of Clinical Chemistry, UZ Brussel, Laarbeeklaan 101, 1090 Brussels,

Relaium

Introduction & Aims

- ✓ Patients with Klinefelter syndrome (KS) are at increased risk for osteoporosis and fractures in adulthood (Bojesen et al., 2011).
- ✓ Data on bone mineralization during childhood and adolescence are limited, although it is a risk period for vitamin low calcium intake and evolving hypogonadism. (Aksglaede et al., 2008). D deficiency,
- ✓ A positive influence of vitamin D, but not of testosterone replacement on bone mineralization has been observed in young adults (Ferlin et al., 2015; van den Bergh et al., 2001).
- ✓ We therefore studied bone mineralization at different sites in KS adolescents and its relationship with vitamin D and gonadal status. KS adolescents with lower calcium intake, lower vitamin D status and lower gonadal function were

expected to be at risk for a deficient bone mineral accumulation.

Patients & Methods

- ✓ Retrospective bone mineral assessments data of 29 (25 pubertal) patients with non-mosaic KS, aged between 10 and 18 years, without vitamin D or testosterone supplementation were retrieved.
- ✓ Areal Spinal BMD was measured by DXA (Hologic QDR 4500A densitometer (Hologic Inc., Bedford, MA, USA) and radial volumetric BMD by pQCT (XCT 2000, Stratec, Phorzheim, Germany)
- \checkmark BMD results are expressed in z-scores using the manufacturer generated reference values.
- ✓ Calcium intake was calculated from a simplified food frequency questionnaire using the method of Nordblad M et al., 2016.
- \checkmark Results of biochemical analysis within 6 months of BMD assessment were recorded

Results

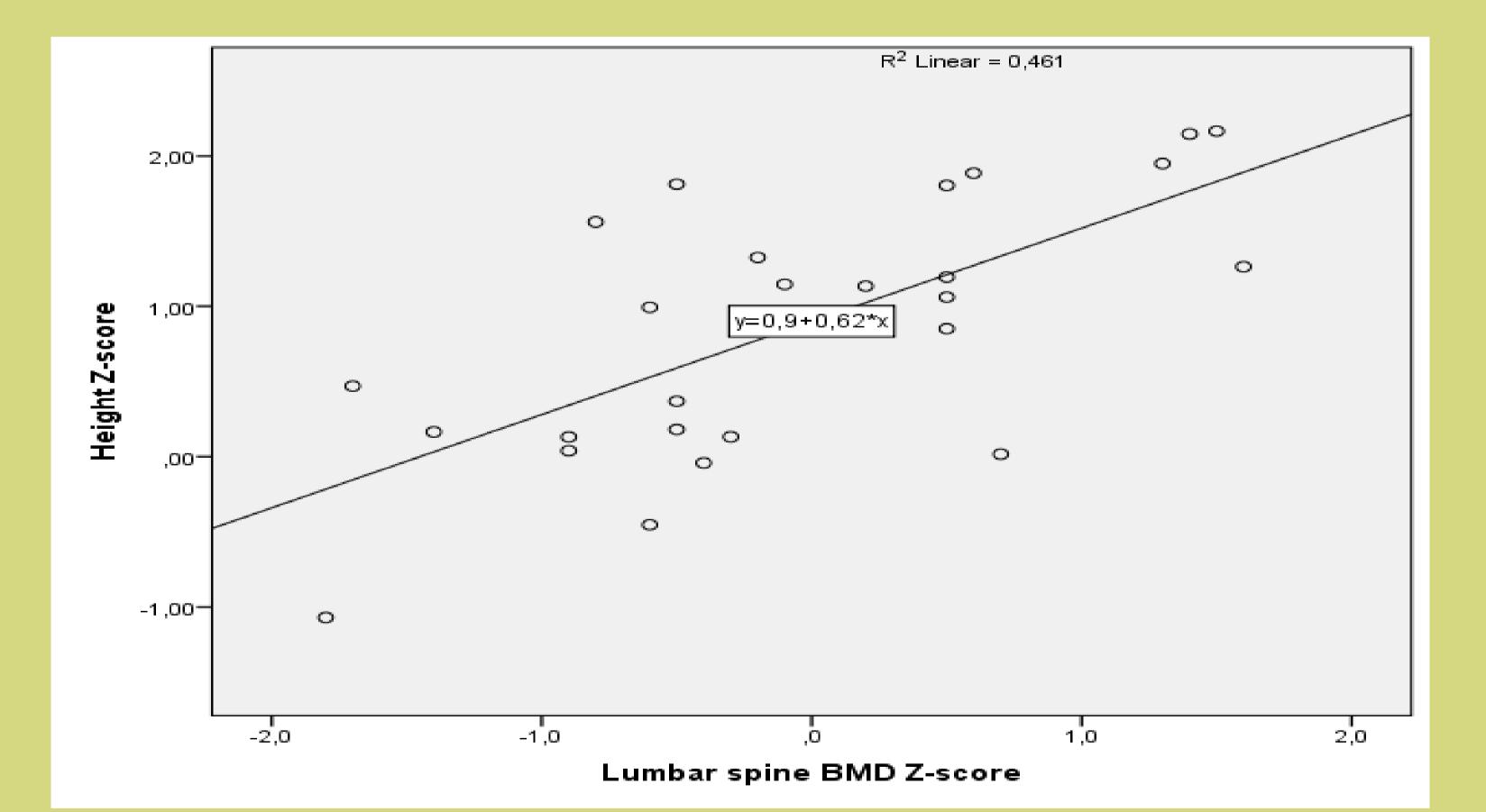

	Median or number	Range (min-max) or %		Median or numbers	Range (min-max) or %
Age (years)	14.8	10.1 - 18.1	25 OH vitamin D (μg/L)	18.6	4.6 - 43.8
Weight (kg)	62.7	28.6 - 127.5			
Weight (z-score)	0.8	-1.6 - 3.4	Vitamin D deficiency (<20 µg/L)(yes/no)	15/14	51
Height (cm)	175.1	135.5 - 190	LH (IU/L)	11.4	0.1 - 53
Height (z-score)	0.8	-1.1 - 2.2	Elevated LH (> 12 IU/L) (yes/no)	15/14	51
BMI (kg/m²)	19.9	14.3 - 38.5	FSH (IU/L)	21.3	0.8 - 78
BMI (z-score)	0.6	-2.7 - 2.8		19/10	
BMI z-score > 1.3 (yes/no)	8/21	37	Elevated FSH (>15 IU/L) (yes/no)		65
Puberty (T > 1) (yes/no)	24/5	85	Testosterone (µg/L)	2.8	0.12 - 7.55
Testicular volume (ml)	6	2 - 12	Decreased (< ref) Testosterone	2/19	0
Calcium intake < 500mg/day	11/13	45	(if G > 2) (yes/no)	2/19	9
(yes/no)			Table 2 Hormonal characteristics of the patients		

Table 1 Clinical characteristics of the patients

	Median or number	Range (min-max) or %		
Spinal BMD (Z score)	-0.83	-1.8 - 1.6		
Radial BMD (Z-score)	-0.10	-1.0 - 1.6		
Decreased (< -1 SD) spinal BMD (yes/no) (%)	5/24	17		
Decreased (< -2 SD) BMD (yes/no)(%)	0	0		
Decreased (< -1 SD) radial BMD (yes/no) (%)	4/17	19		
Decreased (< -1 SD) spinal BMD (yes/no) (%)	0	0		
Table 3 Spinal and radial BMD results				

	Rho (correlation factor)	Significance (p-value)
Height (SDS)	0.66	0.002
BMI (SDS)	0.12	0.51
Testosterone (µg/L)	0.15	0.72
25 OH vitamin D (μg/L)	0.21	0.43
Calcium intake (mg/day)	0.42	0.36

Conclusions

Spinal and radial bone mineralization is normal in KS during adolescence, irrespective of vitamin D status and gonadal status and calcium intake Spinal BMD results in KS should be interpret in relation to the height and pubertal status of the patients

