## Low bone mineral density in adolescents with leukemia after P1-135 hematopoietic stem cell transplantation: Endocrinopathy after HSCT and steroid treatment for GVHD might be major concerns ?

Won Kyoung Cho, Moon bae Ahn, Shin Hee Kim, Kyoung Soon Cho, So Hyun Park, Min Ho Jung, Byung-Kyu Suh

Department of Pediatrics, College of Medicine, The Catholic University of Korea

**Background:** HSCT has improved the prognosis of children with malignant hematologic disease. However, it has had significant adverse effects on the endocrine system, including bone health. limited studies are available to assess osteoporosis in survivors of adolescents after

 Table 1. Patient characteristics and treatment variables

|                                        | Total (n=61)      |
|----------------------------------------|-------------------|
| Sex (female)                           | Female=28 (45.9%) |
| CA at DEXA (years)                     | 16.6±1.3          |
| BA at DEXA (years)                     | $15.6 \pm 2.0$    |
| CA at HSCT (years)                     | $12.4 \pm 3.8$    |
| Interval between DEXA and HSCT (years) | $4.2 \pm 3.7$     |
| Weight-SDS at DEXA                     | $-1.5\pm2.5$      |
| Height-SDS at DEXA                     | $-1.3 \pm 1.8$    |
| BMI-SDS at DEXA                        | $-0.75 \pm 1.8$   |
| Diagnosis                              |                   |
| Lymphoid leukemia                      | 28 (45.9%)        |
| Myeloid leukemia                       | 33 (54.1%)        |
| Preparative regimen                    |                   |
| BU based                               | 30 (49.2%)        |
| TBI based                              | 31 (50.8%)        |
| Acute GVHD                             | 35 (57.4%)        |
| Chronic GVHD                           | 33 (54.1%)        |
| Steroid over 6 months                  | 35 (57.4%)        |
| Cyclosporine over 6months              | 48 (78.7%)        |
| Hypothyroidism                         | 11 (18.0%)        |
| GHD                                    | 14 (23.0%)        |
| Hypogonadism                           | 35 (57.4%)        |

## HSCT

**Objective and hypotheses:** We investigate the bone mineral density (BMD) and endocrinopathy/treatment factors associated with low bone mineral density in adolescents with leukemia treated with hematopoietic stem cell transplantation (HSCT).

Method: Demographic measurements an dual-energy X-ray aborptiometry assessment of Sixty-one adolescents (F=28, M=33; lymphoid=28, myeloid=33) over 14 years of age (16.6±1.3) who were referred to the pediatric endocrinology clinic between September 2009 and September 2014 after HSCT at the Catholic HSCT center were evaluated. Low BMD was classified when lumbar spine (LS)-BMD SDS (standard deviation score) adjusted for age and current height was below -2.0.

| Table 2. | Patient | characteristics | and trea | tment var | iables acc | cording to | low-BMD. |
|----------|---------|-----------------|----------|-----------|------------|------------|----------|
|          |         |                 |          |           |            |            |          |

|                           |                | Total (n=61)   |                |
|---------------------------|----------------|----------------|----------------|
|                           | Low-BMD (n=23) | Normal (n=38)  | <i>P</i> value |
| Sex (female)              | 13 (56.5%)     | 15 (39.5%)     | 0.289          |
| CA at DEXA (years)        | $16.7 \pm 2.3$ | $16.5 \pm 1.5$ | 0.422          |
| BA at DEXA (years)        | $15.3 \pm 1.7$ | $15.8 \pm 2.2$ | 0.286          |
| CA at HSCT                | $13.2 \pm 2.3$ | $11.9 \pm 4.4$ | 0.474          |
| Interval between DEXA     | $3.5 \pm 2.3$  | $4.6 \pm 4.3$  | 0.199          |
| and HSCT (years)          |                |                |                |
| Weight-SDS                | $-1.3 \pm 2.7$ | $-1.5 \pm 2.4$ | 0.781          |
| Height-SDS                | $-1.3 \pm 1.8$ | $-1.3 \pm 1.8$ | 0.986          |
| BMI-SDS                   | $-0.6 \pm 2.1$ | $-0.8 \pm 1.6$ | 0.633          |
| Diagnosis                 |                |                | 0.197          |
| Lymphoid leukemia         | 8(34.8%)       | 20(52.6%)      |                |
| Myeloid leukemia          | 15(65.2%)      | 18(47.4%)      |                |
| Preparative regimen       |                |                | 0.434          |
| BU based                  | 13(56.5%)      | 17(44.7%)      |                |
| TBI based                 | 10(43.5%)      | 21(55.3%)      |                |
| Acute GVHD                | 12(52.2%)      | 23(60.5%)      | 0.598          |
| Chronic GVHD              | 17(73.9%)      | 16(42.1%)      | 0.019          |
| Steroid over 6 months     | 17(73.9%)      | 18(47.4%)      | 0.062          |
| Cyclosporine over 6months | 19(82.6%)      | 29(76.3%)      | 0.749          |
| Hypogonadism              | 18(78.3%)      | 17(44.7%)      | 0.016          |
| GHD                       | 6(26.1%)       | 8(21.1%)       | 0.756          |
| Hypothyroidism            | 4(17.4%)       | 7(18.4%)       | 1.000          |
| Adjusted LS BMD SDS       | $-3.2 \pm 1.1$ | $-0.5 \pm 1.0$ | 0.000          |
| Adjusted FN BMD SDS       | $-2.2 \pm 1.3$ | $-1.0 \pm 1.2$ | 0.000          |

170 children and adolescents checked DEXA between September 2009 and September 2014 after receiving HSCT at the Catholic BMT Center



**Figure 1. Selection of patient populations** 

## Table 3. Odds ratios and 95% confidence intervals of low-BMD.

|                          |       | Univariate    |           | Multivariate |           |
|--------------------------|-------|---------------|-----------|--------------|-----------|
|                          | 61    | OR (95%CI)    | P - value | OR (95%CI)   | P - value |
| Steroid over 6 months No | o 26  | 1.0           |           |              |           |
| Ye                       | es 35 | 3.2 (1.0-9.7) | 0.046     |              |           |
| TT                       | 26    | 1.0           |           | 1.0          |           |

## **Results:** Clinical characteristics were in table 1

Twenty-three (37.7%) out of 61 patients revealed low bone mineral density. In low BMD group, LS-SDS was  $-3.2\pm1.1$ . In low BMD group, the incidence of chronic graft-versus-host disease (cGVHD) (73.9% vs. 42.1%, *P* <0.019), and hypogonadism (78.3% vs. 44.7%, *P* <0.016) were higher than normal BMD group. There were no significant differences of age, sex, weight-SDS, weight-SDS, diagnosis, preparative regimen, acute-GVHD, duration of steroid or cyclosporine treatment for GVHD, growth hormone deficiency (Table 2).

In a multivariate logistic regression analysis, the development of hypogonadism was associated with low BMD (beta=1.371, P = 0.026) (Table 3).

 Hypogonadism
 No
 26
 1.0
 1.0

 Yes
 35
 4.4 (1.4-14.5)
 0.013
 3.9 (1.2-13.2)
 0.026

**Conclusion:** One thirds of adolescents with leukemia treated with HSCT showed low BMD. Monitoring these patients at regular intervals may be necessary for improving bone health during adolescence and adulthood.

**References :** Lim JS, Hwang JS, Lee JA, Kim DH, Park KD, Cheon GJ *et al.* Bone mineral density according to age, bone age, and pubertal stages in korean children and adolescents. *Journal of clinical densitometry : the official journal of the International Society for Clinical Densitometry* 2010; 13(1): 68-76.

Yi KH, Hwang JS, Kim EY, Lee JA, Kim DH, Lim JS. Reference values for bone mineral density according to age with body size adjustment in Korean children and adolescents. *J Bone Miner Metab* 2014; 32(3): 281-289.

