The impact of diet on insulin dynamics over a 2 year period in children with a family history of obesity

Lucas Leclerc¹ - Katherine GrayDonald² - Andrea Benedetti² - Sanyath Radji¹ - <u>Mélanie Henderson^{1,3}</u>

¹Centre de Recherche CHU Sainte-Justine; ²McGill University; ³ University of Montreal

Background

• Despite extensive evidence in adults that lifestyle modification, including a healthy diet, may prevent the onset of type 2 diabetes, studies examining the impact of chronic dietary exposures on insulin dynamics in at-risk children are lacking.

Methods

• Data from 630 children living in Quebec, Canada, with at least one biological parent with obesity (QUALITY cohort) were collected at both 8-10 years (time 1) and 10-12 years (time 2).The characteristics of the cohort at both time points appear in Table 1.

• The aim of our study was to assess how dietary intake predicts insulin sensitivity and secretion over a two year period in children with a family history of obesity.

Results

Table 1: Baseline characteristics	Baseline	Follow-up	Correlation time 1 to time 2
	(n= 630)	(n= 564)	
Age (years), mean (SD)	9.6 (0.9)	11.7 (0.9)	
Sex, % male	54.4	55.5	
BMI category, % *			
Underweight	1.1	2.3	
Normal weight	50.8	48.8	
Overweight	13.2	15.6	
Obese	34.9	33.0	
Pubertal, %	21.5	66.8	
Percent fat mass (%)	25.3 (17.4, 35.2)	27.8 (19.4, 33.4)	0.90
MVPA (min/day)	47.7 (31.3, 65.3)	39.3 (26.6, 55.9)	0.57
Screen time (hrs/day)	2.2 (1.3, 3.7)	2.9 (1.9, 4.4)	0.42
Total kilocalorie intake (kcal/day)	1656 (1410, 1936)		
Carbohydrate, %	53.2 (48.9, 56.9)		
Fat,%	32.3 (29.0, 35.3)		
Saturated fat, %	11.3 (9.7, 13.1)		
Protein, %	15.7 (13.9, 17.9)		
Fiber, g/day	12.7 (10.4, 15.6)		
Sugar-sweetened beverages, mls/day	78.1 (0, 309.8)		MIMMIN

• Macronutrients (including %carbohydrates, %fat, %saturated fat, %protein, fiber, sugar-sweetened beverages, portions of fruits and vegetables) were assessed at baseline using 3 non-consecutive 24-hr dietary recalls.

 Insulin sensitivity, assessed by Matsuda Index, and insulin secretion, assessed by the ratio of the AUC of insulin:glucose at 30min (AUC30) and at 120min (AUC120) after an oral glucose tolerance test (OGTT), were carried out both at baseline and 2 years later.

• Physical activity (PA) was evaluated by 7day accelerometry; screen time was self-reported. Percent fat mass was measured by DXA scan.

• Regression analysis with smoothing splines for nonlinearity were used and models were minimally adjusted for age, sex, PA, screen time, adiposity, season and pubertal stage. We accounted for missing data using

Fruits and vegetables, portions	4.1 (2.9, 5.4)		
Matsuda- ISI	9.3 (6.1, 12.8)	6.6 (4.4, 9.6)	0.63
AUC I/G 30 min	26.4 (17.8, 41.1)	35.7 (24.2, 53.5)	0.63
AUC I/G 120 min	27.2 (19.7, 41.2)	36.3 (24.8, 55.4)	0.63

Note: All results are expressed as median (IQR), except where specified. BMI = body mass index; overweight defined as $BMI \ge 85^{th}$ percentile and obesity defined as $BMI \ge 97^{th}$ percentile. Pubertal refers to Tanner stages 2, 3, 4. MVPA = moderate-to-vigorous physical activity. AUC I/G = area under the curve insulin/glucose

 Table 2: Dietary habits at 8-10 years of age and prediction of insulin sensitivity 2 years later (QUALITY cohort)

Dietary component	Matsuda-ISI		
	Beta-	95% CI	p value
	coefficient*		
Carbohydrates (%)	0.6	(-0.05, 1.3)	0.071
Fat (%)	-0.8	(-1.6, 0.03)	0.058
Saturated fat (%)	-1.6	(-3.2, -0.07)	0.041
Protein (%)	0.07	(-1.1, 1.3)	0.906
Fiber (g/day)	0.3	(-0.9, 1.5)	0.616
Sugar sweetened beverage			
(mls/day)	-0.02	(-0.05, 0.01)	0.188
Fruits and vegetables			
(portions)	2.4	(0.4, 4.4)	0.021

multiple imputation.

 Table 3: Dietary habits at 8-10 years of age and prediction of 1st phase insulin

 secretion (AUC I/G 30 min) 2 years later (QUALITY cohort)

Dietary component	AUC I/G 30 min		
	Beta-	95% CI	p value
	*		
Carbohydrates (%)	-0.01	(-0.5, 0.5)	0.962
Fat (%)	0.5	(-0.4, 0.8)	0.514
Saturated fat (%)	0.3	(-1.0, 1.5)	0.671
Protein (%)	-0.3	(-1.2, 0.7)	0.547
Fiber (g/day)	0.01	(-0.9, 0.9)	0.979
Sugar sweetened beverage (mls/day)	-0.009	(-0.03, 0.01)	0.454
Fruits and vegetables (portions)	-0.7	(-2.2, 0.9)	0.411

Table 4: Dietary habits at 8-10 years of	of age and pro	ediction of 2 nd pl	hase insulin
secretion (AUC I/G 120 min) 2 years la	ater (QUALI	ITY cohort)	
Dietary component	AUC I/G 120 min		
	Beta-	95% CI	p value
	coefficient*	:	
Carbohydrates (%)	0.1	(-0.3, 0.5)	0.624
Fat (%)	-0.2	(-0.7, 0.3)	0.49
Saturated fat (%)	-0.02	(-1.1, 1.0)	0.967
Protein (%)	-0.4	(-1.2, 0.4)	0.305
Fiber (g/day)	0.5	(-0.3, 1.3)	0.232
Sugar sweetened beverage (mls/day)	-0.02	(-0.04, 0.002)	0.086
Fruits and vegetables (portions)	0.3	(-1.0, 1.7)	0.614

For Tables 2, 3 and 4:

Beta coefficient interpretation (*): % difference in outcome measure for every 1 unit increase in exposure
All models are adjusted for age, sex, Tanner stage, MVPA, season, screen time and adiposity; in addition, models including sugar-sweetened beverage intake and fruits and vegetable portions were adjusted for total kcal intake; Matsuda-ISI was adjusted for in all models with insulin secretion as outcome

 Note that adiposity is highly predictive of both insulin sensitivity and insulin secretion in all models

Conclusions

- In youth with a family history of obesity, diets low in saturated fat and high in fruits and vegetables improved insulin sensitivity, while no dietary component predicted insulin secretion
- These dietary strategies may contribute to preventing the later development of type 2 diabetes in at-risk youth.

