

The Genetic Causes and Phenotypic Characteristics of Egyptian Patients with Neonatal Diabetes Mellitus

Rasha Elkaffas^{1, 2}, Noha Musa³, Hanan A Madani², Yomna Shalan³, Rania M.H. El-Kaffas³, Mona Hassan³, Mona Hafez³, Badawy El Kholy² Elisa De Franco⁴, Sarah E Flanagan⁴, Sian Ellard⁴, Khalid Hussain¹

¹Genetics and Genomic Medicine, UCL GOSH Institute of Child Health, London, UK. ² Clinical and Chemical Pathology department, faculty of Medicine, Cairo University, Egypt. ³Pediatrics department, faculty of medicine, Cairo University, Egypt. ⁴Department of Molecular genetics, Institute of Biomedical and Clinical Science, Peninsula Medical School, University of Exeter, Exeter, United Kingdom.

Introduction

Neonatal Diabetes Mellitus (NDM) is a rare form of monogenic diabetes that typically presents during the first 6 months of life. Its prevalence is about 1:100,000 live births¹; however it may rise up to 1:29,000 in highly consanguineous populations². Mutations in 21 different genes are reported as well as methylation defects at the 6q24 locus; with the most common cause being potassium channel subunit gene (*KCNJ11/ABCC8*)

Materials and Methods

A cohort of 16 patients from different areas of Egypt from 2012-2016

Diabetic neonates <6 months, attending the Diabetic Endocrine and Metabolic Pediatric Unit (DEMPU) of Cairo University Children's Hospital

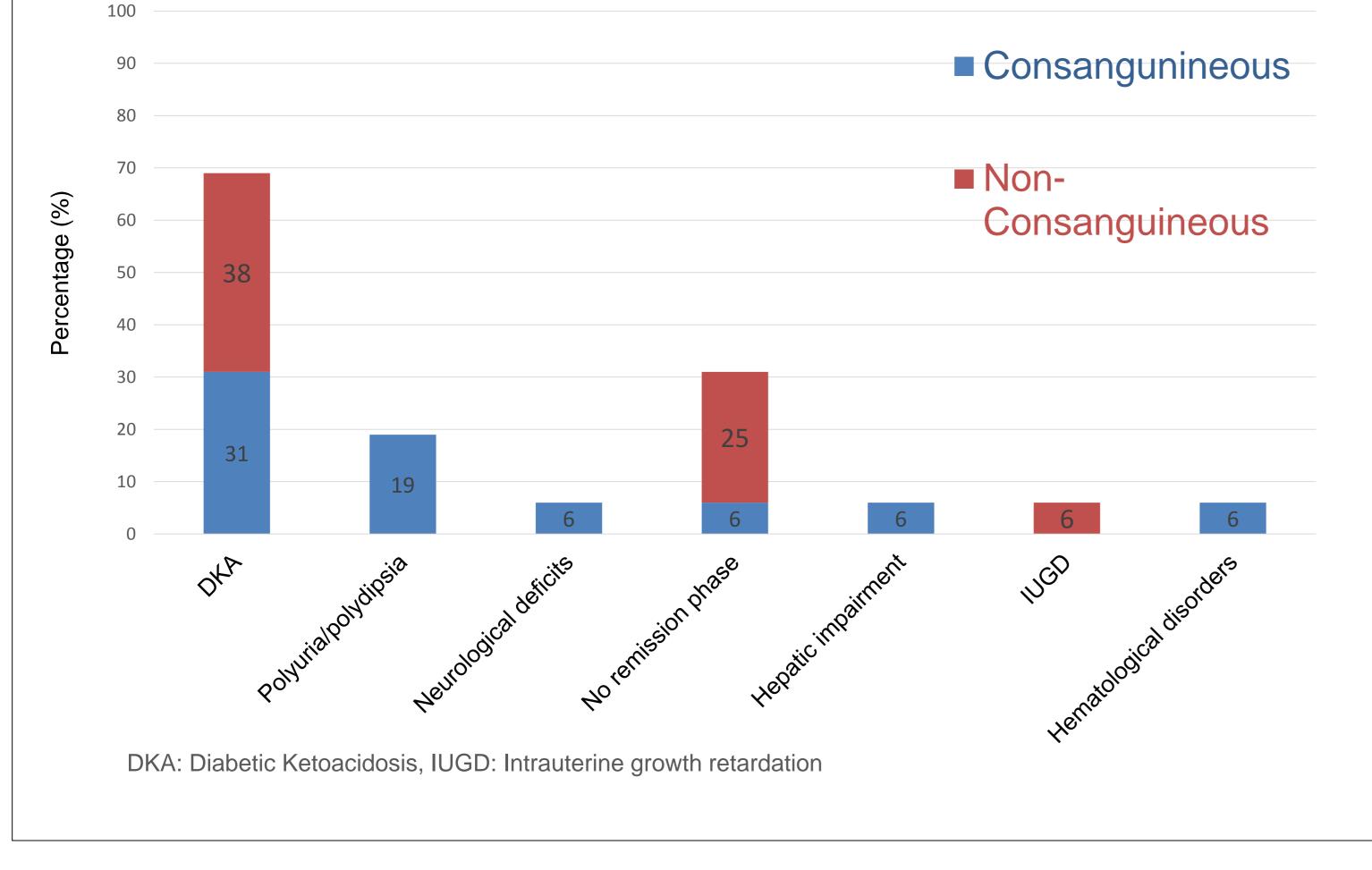
mutations³.

Causative mutations among consanguineous populations seem to differ. Studies on NDM in these populations are still limited. Parental consent and ethical approval obtained Data collection, physical examination and sampling

<u>Sequence Analysis for</u> ABCC8, KNCJ11,INS and EIF2AK3 genes

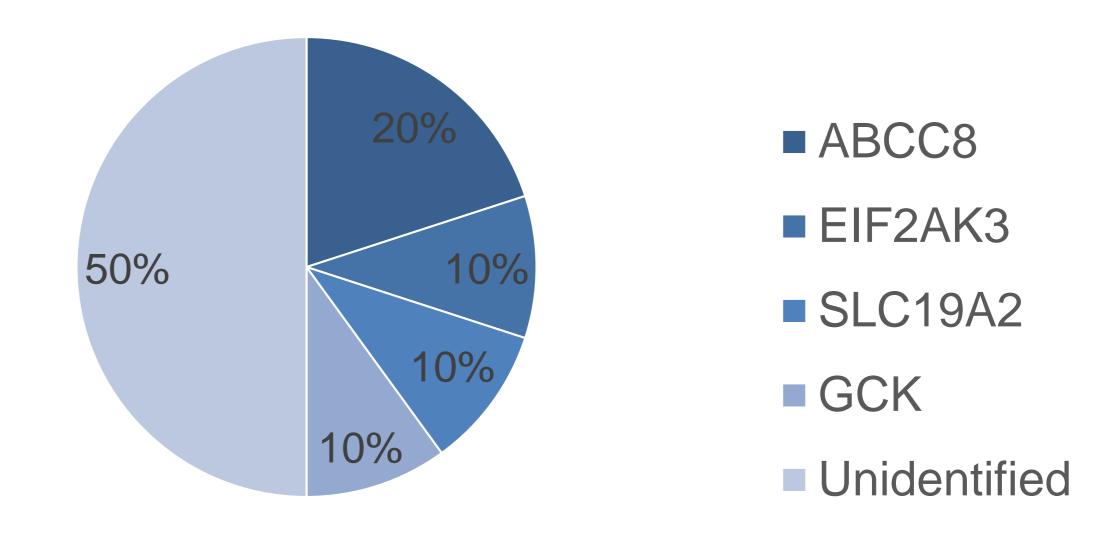
<u>Targeted sequencing</u> According to the presenting phenotype

To identify the genetic causes among a group of Egyptian patients with NDM and to describe their clinical phenotypes.

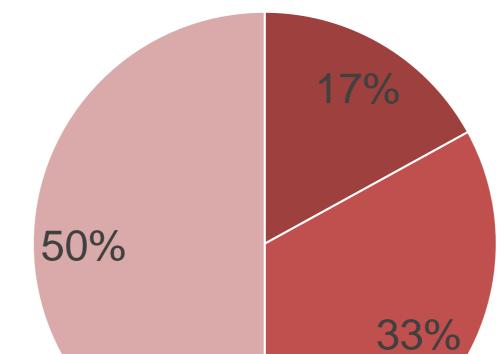

<u>A</u>im

Patients demographic data

N	lale/Female, (n)	Mean Age of Onset (months)	Mean Gestational Age (weeks)	Mean Birth Weight (g)	Mean Plasma Glucose Level at Onset (mg/dl)	Mean HbA1C Level (%)	Mean Insulin Dose at onset (U/kg/day)	Positive Family history of DM, n (%)	Consanguinity, n (%)
	10/6	2.6	37	2500	529	8.2	0.7	9 (56%)	10(62.5%)


Results

Clinical presentations associated with Neonatal Hyperglycaemia of the study group



Genetic causes of Neonatal Diabetes in the study group

Consanguineous group (10/16, 62.5%)

Non-consanguineous group (6/16, 37.5%)

6q24 methylation defect

KCNJ11

The genetic causes identified among the studied group were heterogeneous.

Conclusion

- Potassium channel subunit gene mutations were identified in 25% (4/16) of the total studied group, which is less than the reported percentage in European populations.
- A variable spectrum of clinical phenotypes were associated, however diabetic ketoacidosis was the most common presentation.
- Syndromic forms of NDM were more identified in the consanguineous group.

Acknowledgment

This study was funded by the Egyptian Ministry of Higher Education, Cultural Affairs and Missions Sector (MOHE-CASM). Thanks to University of South Hampton, School of Medicine Human Genetics Research Division for methylation defects analysis.

Unidentified

References

1 De Franco E, Flanagan SE, Houghton, JL, Lango Allen H, Mackay D J, Temple IK, Ellard S, Hattersley AT. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. *Lancet* 2015; 386(9997): 957–63. 2 Deeb A, Habeb, A, Kaplan, W, Attia, S, Hadi, S, Osman, A, J Al-Jubeh, Flanagan SE, De Franco E, Ellard, S. Genetic characteristics, clinical spectrum, and incidence of neonatal diabetes in the Emirate of AbuDhabi, United Arab Emirates. *American journal of medical genetics A* 2015; 170(3), 602–9.

3 Greeley SAW, Naylor RN, Philipson LH, Bell GI. Neonatal diabetes: an expanding list of genes allows for improved diagnosis and treatment. *Curr Diab Rep* 2011;**11**(6):519–32.

Declaration of interest

None of the authors have any conflict of interest to declare

