

P1-449

EFICACY, SAFETY AND METABOLIC EFFECTS OF CARBOHYDRATE RESTRICTION

IN THE TREATMENT OF OBESE ADOLESCENTS

Gabriel Á. Martos-Moreno^{1,2,3}, Rocío González-Leal¹, Jesús Argente^{1,2,3}

¹Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, IIS La Princesa. ²Universidad Autónoma de Madrid ³CIBERobn, Instituto de Salud Carlos III; Madrid, Spain.

The authors have nothing to disclose

Introduction:

- Available experience regarding the modification in the proportions of macronutrients for the treatment of obesity in adolescents is limited.
- Dietary carbohydrate restriction could cause a substantial shift in the substrates preferentially used as energy source, thus inducing modifications on body composition and, together, expected to determine metabolic changes in obese adolescents.

Objectives:

To evaluate the effect of dietary carbohydrate restriction for 6 months in obese adolescents on:

- 1) Body composition
- 2) Parameters of carbohydrate metabolism
- 3) Lipid profile

Patients and methods:

- Out of a group of 110 obese Caucasian adolescents recruited and visited monthly, thirty-six completing a minimum follow-up of 6 months were studied. This subgroup was made up of 22 girls and 14 boys and their mean age and BMI were 15.8 \pm 1.5 years and \pm 4.72 \pm 2.80 BMI-SDS, respectively.
- Patients were randomly assigned to two different nutritional interventions, both affording similar caloric supply (1500 kcal/day) but differing in the relative proportion of macronutrients: limited carbohydrate diet (L-CH, n=19, 10% daily energy supply from carbohydrates, 60% from fat and 30% from proteins for 4 months and, after the fourth month, 30% from carbohydrates, 50% from fat and 20% from proteins) vs. unrestricted (normal) carbohydrate diet (N-CH, n=17, 52% daily energy supply from carbohydrates, 30% from fat and 18% from proteins, during the 6 month period).
- Patients were studied at recruitment (R) and after 3 (3M) and 6 months (6M). BMI, body composition (as measured by bioimpedance analysis [BIA], Tanita® BC-420MA), glycemia, insulinemia, HOMA index, lipid profile, uric acid and serum 25[OH]vitamin-D levels were analyzed in every time-point.

Results:

- Both groups significantly reduced their BMI-SDS from R to 6M (p < 0.001), although this reduction in BMI was more intense in the L-CH group (-1.70 \pm 0.98 ν s. -0.80 \pm 1.09 BMI-SDS in the N-CH; p < 0.05). This decrease in BMI was mainly achieved in the first 3 months of dieting (-1.41 \pm 0.71 ν s. -0.62 \pm 0.78 in the N-CH; p < 0.001) as the BMI-SDS evolution between 3 and 6 months was similar. This loss in BMI was due to a decrease in fat mass (Figures A & B).
- A transient rise in serum uric acid levels was observed in the L-CH group at 3M (p < 0.01), which normalized at 6M (Fig. C).
- HOMA index improved significantly exclusively in the L-CH group at 6M (-1.75 \pm 1.48 vs. +0.15 \pm 1.25 in N-CH; p < 0.001), despite both groups achieved significant weight reduction (Figure D).
- In contrast, both groups showed a similar increase in serum 25[OH] vitamin-D levels after attaining weight loss at 6M (p < 0.001, Figure E).
- No significant differences within or between groups were observed in the evolution of the components of the lipid profile studied.

Fat Metabolism and Obesity

Conclusion:

• Diet carbohydrate restriction results in a more intense weight reduction and insulin resistance improvement in obese adolescents after 6 months of treatment.

Acknowledgements: This study has been funded by FEDER and PI13-02195 (Fondo de Investigación Sanitaria) and CIBERobn (ISCIII) funds.

