

Disclosure statement: All authors of this poster have nothing to disclose.

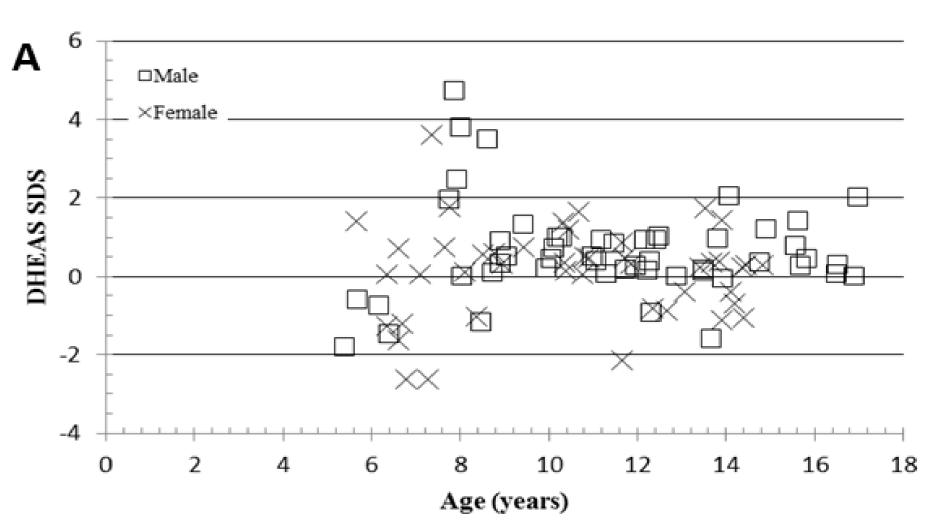
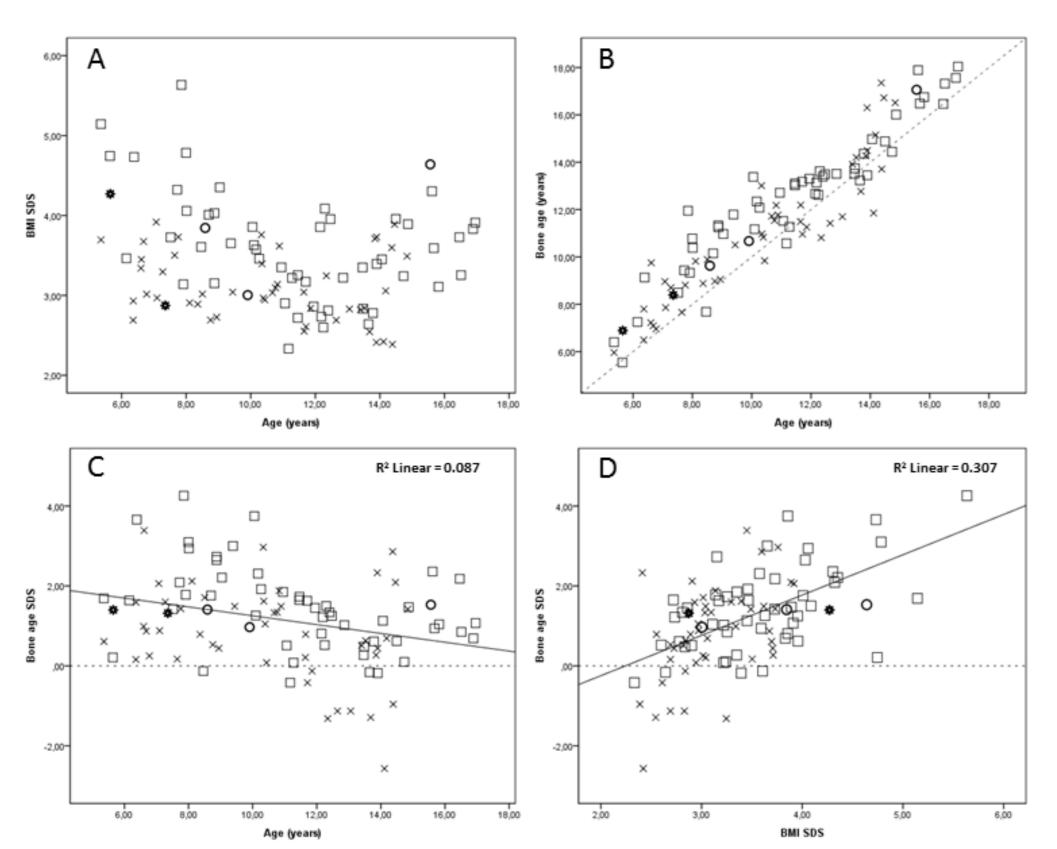
Determinants of advanced bone age in childhood obesity

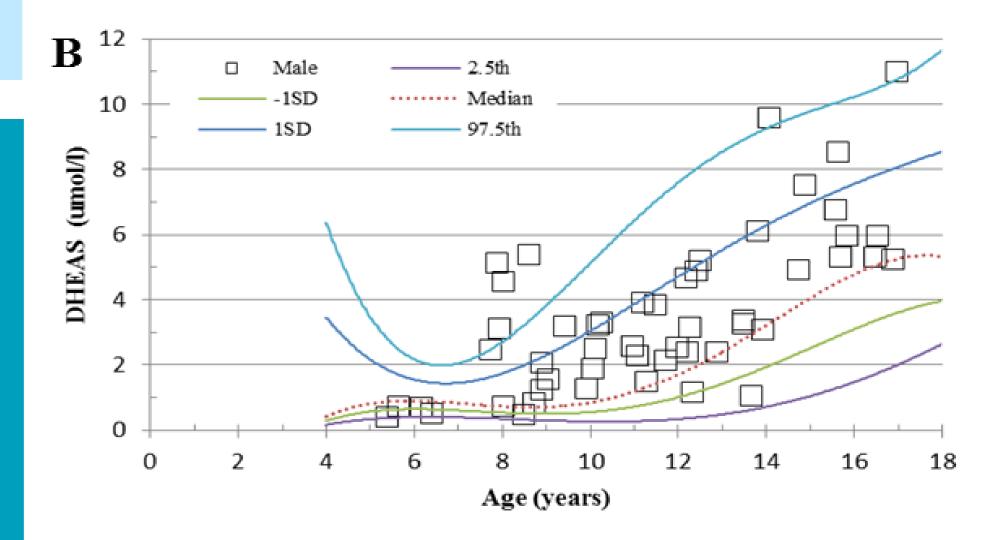
Introduction

Childhood obesity is associated with advanced bone age (BA), leading to an altered growth pattern. Previous studies suggest that androgens, estrogens, sex hormone binding globulin and insulin are responsible for this phenomenon, but results are contradictory and might be biased by confounders, such as effects caused by aging or progression in to puberty¹⁻⁵. We aim to elucidate this matter by applying a multivariate approach.

Methods

In this cohort study, we performed a correlation analysis of BA standard deviation score (SDS) with androgens, oestrogens and indicators of insulin secretion derived from oral glucose tolerance testing, in a group of obese children and in subgroups according to sex and pubertal status. For oestradiol, testosterone, sex hormone binding globulin (SHBG) and dihydroepiandrosterone sulphate (DHEAS) we calculated age and sex specific SDS using available reference data⁶⁻⁷ and applying the strategy described by Gerver⁸. An example for DHEAS is shown in figure 1. A multivariate analysis was performed to investigate which parameters were independently predictive of BA SDS.


Figure 2

Results

In this cohort (n=101; 47% female; 56% pubertal; mean age 10.9 yrs; mean BA 11.8 yrs; mean BMI SDS 3.3), BMI SDS was significantly correlated to BA SDS (r=0.55, p< 0.001). In a regression analysis (table 1) in the total cohort (B=0.27, p<0.001), as well as in females (B=0.34, p=0.042), males (B=0.31, p=0.006) and pubertal children (B=0.32, p=0.046), DHEAS showed a positive, independent association with BA SDS. In prepubertal children, SHBG showed an independent negative association with BA SDS (B=-0.41, p=0.013). No association with insulin, insulin resistance or insulin secretion was found.

Conclusions

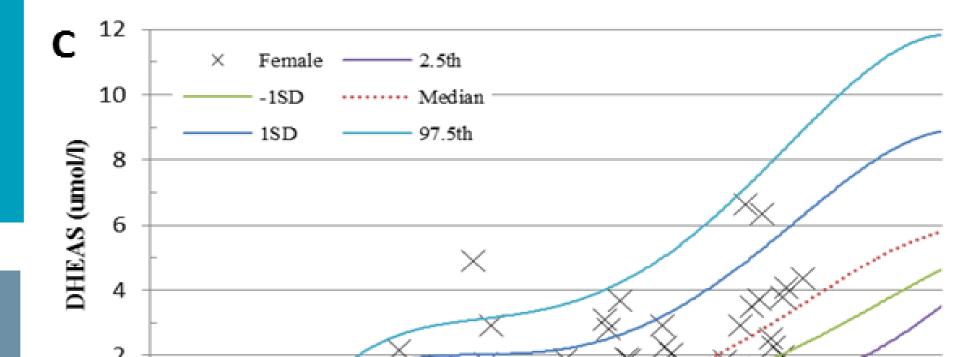


Figure 2 A: representation of BMI SDS and age (years); B: association between bone age (years) and chronological age (years); C: association between bone age SDS and age; D: association between bone age SDS and BMI SDS. Abbreviations: SDS: standard deviation score; BMI: body mass index; R²: Coefficient of deviation. Squares represent males, x represent females, bold circles represents males with monogenetic obesity, bold stars represent females with monogenetic obesity.

Erasmus MC

Universitair Medisch Centrum Rotterdam

zamo

BMI SDS is highly correlated to BA SDS in obese children. Increased DHEAS is independently associated with advanced bone age in obese children, indicating an independent role for androgen access in advanced bone age in obese children.

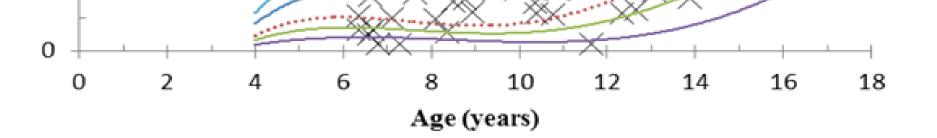


Figure 1 A: Resulting DHEAS SDS for males and females calculated by relating a subjects DHEAS levels to the age specific +1 or -1 SD as shown in figure B and C.

References

(1) Klein KO et al. Bone maturation along the spectrum from normal weight to obesity: a complex interplay of sex, growth factors and weight gain. *Journal of Pediatric Endocrinology and Metabolism* 2016 **29** 311-318.

(2) Sopher AB et al. Bone age advancement in prepubertal children with obesity and premature adrenarche: possible potentiating factors. *Obesity* 2011 **19** 1259-1264.
(3) Vandewalle S et al. Sex steroids in relation to sexual and skeletal maturation in obese male adolescents. *Journal of Clinical Endocrinology and Metabolism* 2014 **99** 2977-2985.

(4) Reinehr T et al. Relationships of IGF-I and andrrogens to skeletal maturation in obese children and adolescents. *Journal of Pediatric Endocrinology and Metabolism* 2006 **19** 1133-1140.

(5) Klein KO et al. Effect of obesity on estradiol level, and its relationship to leptin, bone maturation, and bone mineral density in children. *Journal of Clinical Endocrinology and Metabolism* 1998 **83** 3469-3475.

(6) Elmlinger MW et al. Reference ranges for serum concentrations of lutropin (LH), follitropin (FSH), estradiol (E2), prolactin, progesterone, sex hormone-binding globulin (SHBG), dehydroepiandrosterone sulfate (DHEAS), cortisol and ferritin in neonates, children and young adults. *Clinical Chemistry and Laboratory Medicine* 2002 **40** 1151-1160.

(7) Konforte D et al. Complex biological pattern of fertility hormones in children and adolescents: a study of healthy children from the CALIPER cohort and establishment of pediatric reference intervals. *Clinical Chemistry* 2013 **59** 1215-1227.
(8) Gerver WJM et al. *Paediatric Morphometrics*. 2 ed. Wetenschappelijke uitgeverij Bunge; 2001.

		Coefficiënt	CI 95%	\mathbf{R}^2	p-value
Total cohort (n=88)	Constant	2.17	1.39/2.96		< 0.001
	Sex male	0.62	0.18/1.06		0.006
	DHEAS SDS	0.27	0.09/0.44		< 0.001
	Age	-0.13	-0.20/-0.06		0.036
	Model			0.27	< 0.001
Female (n=52)	Constant	2.68	1.25/4.11		0.001
	DHEAS SDS	0.34	0.01/0.66		0.042
	SHBG SDS	0.29	-0.04/0.62		0.086
	Age	-0.14	-0.26/-0.02		0.024
	Model			0.21	0.030
Male (n=46)	Constant	2.81	1.80/3.81		< 0.001
	DHEAS SDS	0.31	0.09/0.52		0.006
	Age	-0.14	-0.22/-0.05		0.002
	Model			0.30	< 0.001

Prepubertal (n=36)	Constant	2.26	1.17/4.02		0.001
	Sex male	0.98	0.30/1.67		0.006
	SHBG SDS	-0.41	-0.76/-0.09		0.013
	Age	-0.27	-0.46/-0.07		0.009
	Model			0.31	0.006
Pubertal (n=37)	Constant	0.70	0.32/1.08		0.001
	DHEAS SDS	0.43	0.01/0.85		0.046
	Model			0.11	0.046

Table 1.Backward linear regression analysis of bone age SDS. Variables included in all model: age, fasting insulin, HOMA-IR, AUC-insulin, DHEAS SDS, SHBG SDS. In the total cohort and pubertal subgroups, sex was added as an independent variable. In the pubertal subgroup only, oestradiol SDS and testosterone SDS were added as independent variables. Abbreviations: HOMA-IR, homeostatic model assessment of insulin-resistance; SHBG, sex hormone binding globulin; DHEAS, Dihydroepiandrosterone sulphate; SDS, standard deviation score.

Acknowledgements

We thank dr. N. van Geloven for advice on the statistical analysis. The authors express their gratitude to prof. dr. H.A. Delemarre-van de Waal for her efforts invested in setting up the obesity outpatient clinic in the Willem-Alexander Children Hospital and for facilitating the set-up of this study. Prof. Delemarre-van de Waal deceased 13th of February 2014. Furthermore, we thank dr. A. Felius for his support in the clinical part of this study.

