

Congenital Hyperinsulinism in Infancy: The Profiles of Insulin Secretory Granules are Markedly Different in Focal- and Diffuse β-Ccells

Bing Han1, Maria Salomon-Estebanez^{1,2}, Zainab Mohamed^{1,2}, Raja Padidela², Mars Skae², Karen E Cosgrove¹, Indi Banerjee², Mark J Dunne¹

Faculty of Biology, Medicine & Health, University of Manchester ¹ and The Department of Paediatric Endocrinology, The Royal Manchester Children's Hospital², UK

Background & Objectives

Congenital Hyperinsulinism of Infancy (CHI) is a potentially lethal condition of profound hypoglycaemia caused by unregulated insulin release in the neonatal period and early infancy. CHI mainly arises due to mutations in ATP-sensitive K⁺-channel genes (*ABCC8* and *KCNJ11*) which can manifest in all islets cells – diffuse-CHI, or can be localised to a focal lesion, focal-CHI.

The mechanisms responsible for inappropriate insulin release have largely

Methods

Tissue was obtained following surgery from patients with diffuse-CHI (n=4 patients with *ABCC8* gene defects), lesion from focal-CHI (n=4 patients with ABCC8 gene defects) and control samples (n=4 with no known genetic mutations related to CHI disease). Immunohistochemistry stains (IHC) with SNAP25 were performed on histological sections (5 μ m). Ultrathin sections (70 nm) and cryo-sections (70nm) were cut for routine Transmission Electron Microscopy (TEM) and immuno-gold labelling, respectively. Insulin-containing granules were identified and quantified in image J and data were analysed for significance using One-way ANOVA followed by Tukey's post hoc test.

focused upon defects in K_{ATP} channels. As little is known about insulin biogenesis in CHI, our objectives were to assess the profiles of insulincontaining granules in β -cells from patients with diffuse- and focal disease.

1. Insulin-Containing Granules

3. The Profile of Multi-vesicular Structures

Panel A shows the incidence of multi-vesicular insulin-containing granules in the different forms of CHI compared with controls. Note that insulin-containing

2. The Profile of Insulin-Containing Granules

secretory granules in focal-CHI are mainly found in multi-vesicular structures compared with diffuse and controls β -cells. No significant differences were detected between the diffuse-CHI and control. ****P<0.0001. Panel B shows a representative TEM image of the multi-vesicular structure (red arrow) in focal-CHI lesion. Scale bar = 0.5µm.

4. Expression of Crucial Exocytosis Related Protein

SNAP25 is a core component of exocytosis β -cells and amongst the top 0.2% of genes that are upregulated in focal-diffuse lesions (P=2.1 x10⁻⁷, False

Panel A illustrates that there are marked differences in the profiles of insulin biogenesis in focal CHI compared to control and diffuse CHI tissue. Panel B indicates that the percentage of depleted granules is significantly higher in focal-CHI lesion while immature granules are significantly lower than control and diffuse CHI tissue. Mature insulin in the form of crystalline granules was similar between focal- and diffuse-CHI but did reach significance; *P=0.045. **P<0.01; ***P<0.001; ***P<0.001. Panels C and D show representative TEM images for diffuse-CHI and focal-CH, respectively. Note that there are far fewer depleted granules in islets from diffuse CHI tissue. Scale bars = 0.5µm.

Discovery Rate =1.1 x10⁻⁴, *unpublished*). Using immunohistochemisty we found that the localisation of SNAP25 was markedly different in focal-CHI β -cells (A) compared to diffuse-CHI (B) and control tissue (C). Note how in focal CHI, SNAP25 has a far more marked association with the plasma membrane compared to diffuse disease. Scale bars = 50µm.

Conclusions

Our data imply that β -cells in focal-CHI have a greater secretory capacity (increased number multi-vesicular secretory granules, depleted granules, altered localisation of SNAP25) than in diffuse disease, despite the fact that both conditions associate with *ABCC8* gene defects.

Perinatal Endocrinology

Mark Dunne

549--P1

DOI: 10.3252/pso.eu.55ESPE.2016